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Abstract. We show that Chow groups of low dimension cycles
are torsion free for a class of sufficiently generic Severi–Brauer vari-
eties. Using a recent result of Karpenko, this allows us to compute
the algebraic connective K-theory in low degrees for the same class
of varieties. Independently of these results, we show that the asso-
ciated graded ring for the topological filtration on the Grothendieck
ring is torsion free in the same degrees for an arbitrary Severi–
Brauer variety.

1. Introduction

The goal of this paper is to determine some low degree algebraic
connective K-groups for a class of generic Severi–Brauer varieties that
have arbitrary reduced behavior (see Example 2.2). By a recent result
of Karpenko [Kar20] this problem can be reduced to checking that the
canonical surjection, from the Chow groups to the associated graded
groups for the topological filtration on the Grothendieck group of co-
herent sheaves, is an isomorphism in these low degrees. This is accom-
plished by Theorem 3.1 which shows that the Chow groups of these
generic Severi–Brauer varieties are torsion free.

Motivated by this result, we also make some observations on the
structure of the algebraic connective K-theory of the Severi–Brauer
varieties constructed in Section 2 and we give a presentation (due to
Karpenko) of the topological filtration for an arbitrary Severi–Brauer
variety.

Although the results of this paper are new, the techniques that go
into their proofs have mostly appeared already in other places. This
is especially true for our proof of Theorem 3.1 that employs a number
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of tools that have been developed in [Kar17b, KM19, Mac19]. In fact,
in specific cases, Theorem 3.1 can already be found in the subtleties of
these articles but, this was mostly overlooked when they were originally
written.

The contents of this paper are structured as follows. In Section 2,
we show how one can extend known constructions of Severi–Brauer va-
rieties with prescribed reduced behavior to a construction where one
also knows information about the generators of the Chow rings of these
varieties.

Section 3 contains our proof of Theorem 3.1. Here we pull a num-
ber of results from other recent works of the author and Karpenko
to get our computation of the Chow groups of a Severi–Brauer variety.
We’ve tried to write this section so that it can be read independently of
these other works but, for the full proof one will have to look elsewhere.

Finally, we conclude in Section 4 with some observations of indepen-
dent interest on algebraic connective K-theory and on the topological
filtration.

Acknowledgments. I’d like to thank Nikita Karpenko for both in-
troducing me to algebraic connective K-theory and for communicating
to me the proof of Theorem 4.7 that’s given here. I’d also like to thank
an anonymous referee for a careful reading of this paper which greatly
improved its quality.

Notation and Conventions.

• We fix an arbitrary base field k. When no confusion should arise, we
may also use k as index.
• For any field F , an F -variety, or simply a variety if the field F is

clear from context, is a separated scheme of finite type over F .
• For a central simple k-algebra A, we write SB(A) for the associated

Severi–Brauer variety of minimal right ideals of A.
• For a Severi–Brauer variety X, we write AZ(X) for the associated

central simple k-algebra corresponding to the endomorphism algebra
End(ζ∨X) of the unique nontrivial extension

0→ ΩX → ζX → OX → 0

of locally free sheaves on X.
• Lastly, if p is a prime then by vp we mean the usual p-adic valuation.
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2. Severi–Brauer varieties

Here we provide examples of Severi–Brauer variety with some nice
properties. Recall from [Kar98, Definition 3.8] that the reduced behav-
ior of a central simple k-algebra A with ind(A) = pn for a prime p and
n ≥ 1 is the sequence

rBeh(A) =
(
vpind(A⊗p

i

)
)vpexp(A)
i=0

.

Remark 2.1. Let p be a prime, let n ≥ 0 be an integer, and let A
be a central simple k-algebra of index ind(A) = pn. Then the index
ind(A⊗i) depends only on the p-adic valuation vp(i):

ind(A⊗i) = ind(A⊗p
vp(i)

).

For example, if i is prime-to-p, then ind(A⊗i) = pn. In this way one
can reconstruct the index ind(A⊗i), for any i ≥ 0, from the reduced
behavior.

Example 2.2. Given any sequence of integers S = (ni)
m
i=0 with the

property that n = n0 > n1 > · · · > nm = 0, one can construct a
Severi–Brauer variety XS associated to a division algebra AS of index
ind(AS) = pn with reduced behavior

rBeh(XS) = (n0, n1, ..., nm).

In this example, we show that one can construct XS defined over a
large field extension K of the base field k so that XS has the additional
property that the Chow ring CH(XS

LK) of the scalar extension of XS

to the composite field LK is generated by CH-Chern classes for every
algebraic extension L/k.

To start, we fix a power r = pn of a prime p, we set G = PGLr, and
we choose a faithful representation G → GL(V ) of G into the general
linear group of a finite dimensional k-vector space V . We write E for
the generic fiber of the quotient map π : GL(V ) → GL(V )/G. The
group G acts on Pr via left multiplication and we choose P ⊂ G to
be the stabilizer of a rational point under this action. The quotient
E/P is a Severi–Brauer variety over the field F = k(GL(V )/G) and
the central simple F -algebra AZ(E/P ) associated to E/P is a division
algebra having index and exponent equal pn.

In particular, by [Kar98, Example 3.9] the reduced behavior of
AZ(E/P ) is

rBeh(AZ(E/P )) = (n, n− 1, ..., 1, 0)
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the sequence whose ith term, starting from i = 0, is n− i. Now for any
strictly decreasing sequence like S = (ni)

m
i=0 with n0 = n and nm = 0

we can consider the varieties

Z =
m∏
i=0

Zi and Zi = SB(pni ,AZ(E/P )⊗p
i

)

with SB(pni ,AZ(E/P )⊗p
i
) the generalized Severi-Brauer variety of re-

duced dimension-pni right ideals inside of AZ(E/P )⊗p
i
.

We claim that the pair

XS = (E/P )F (Z) and AS = AZ(E/P )F (Z)

defined over the field K = F (Z) has the specified properties. First,
by an application of index reduction, see [Kar98, Lemma 3.10], the
K-division algebra AS has reduced behavior

rBeh(AS) = (n0, n1, ..., nm)

as claimed. Next, we observe:

(1) CH(E/P ) is generated by CH-Chern classes by [Kar18, Proposition
6.1] and [Kar17a, Proof of Lemma 2.1],

(2) CH(E/P × Z) is generated by CH-Chern classes as E/P × Z is a
chain of Grassmannian bundles over E/P [Kar18, Proposition 6.1]
and [Kar17a, Proof of Lemma 2.1],

(3) and CH(XS) is generated by CH-Chern classes since XS is the
generic fiber of the projection E/P × Z → Z.

Finally, the proofs of (1), (2), and (3) above go through unchanged
for the varieties ELF/PL, ELF/PL ×ZLF , and XS

LK for every algebraic
extension L/k showing that XS and AS have all of the claimed prop-
erties.

3. Chow theory

Throughout this section we assume X = SB(A) is the Severi–Brauer
variety associated to a central simple k-algebraA having index ind(A) =
pn for some prime p and for some n ≥ 1. We also fix a chain of finite
field extensions of k

k ⊂ L0 ⊂ L1 ⊂ · · · ⊂ Li ⊂ · · · ⊂ Ln

such that the degree [L0 : k] is prime-to-p and

[Li+1 : Li] = p and ind(ALi
) = pn−i.

We write CHi(X) for the integral Chow group of dimension-i cycles on
X modulo rational equivalence and CHi(X) for the group of codimension-
i cycles. The main result of this section is the following theorem.
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Theorem 3.1. Let X = SB(A) and assume ind(A) = pn for some
prime p and for some n ≥ 1. Fix an integer 0 ≤ i ≤ p − 2 and as-
sume CHi(X) is generated by polynomials in CH-Chern classes. Then
CHi(X) = Z.

Example 3.2. Let p be a prime and let S be a strictly decreasing
sequence of nonnegative integers ending in 0. Let XS be the Severi–
Brauer variety constructed from p and S as in Example 2.2. Then
CH(XS) is generated as a ring by CH-Chern classes so that Theorem
3.1 applies for all 0 ≤ i ≤ p− 2.

Since the groups CHi(X) can contain only p-primary torsion, it fol-
lows from a restriction-corestriction argument that CHi(X) and CHi(XL0)
coincide. To simplify our notation, we’ll assume from now on that
k = L0 and we’ll work with the localized groups CHi(X)⊗ Z(p).

The proof of Theorem 3.1 in this setting requires a number of struc-
ture results for subrings CT(i;X) of CH(X) that are generated by par-
ticular CH-Chern classes. Our starting point will be these structure
results.

Definition 3.3. For any i ≥ 0, we let CT(i;X) be the subring of
CH(X) with generators the Chern classes of ζX(i) = ζX ⊗A⊗i Mi where
Mi is any simple left A⊗i-module. The ring CT(i;X) is canonically
graded, and we write CTj(i;X) ⊂ CHj(X) for its jth graded summand.

We recall that the groups CTj(i;X) are torsion free and of rank one
for any 0 ≤ j ≤ dim(X). Further, each of the localizations CTj(i;X)⊗
Z(p) has a canonical generator that we denote by τi(j):

Proposition 3.4 ([KM19, Proposition A.8]). For any i ≥ 0, the Z(p)-
module CT(i;X)⊗Z(p) is free. Moreover, for any j with 0 ≤ j < deg(A)

the degree-j summand CTj(i;X)⊗ Z(p) is generated by the element

τi(j) := cpv(ζX(i))s0cs1(ζX(i))

where pv is the largest power of p dividing ind(A⊗i) and j = pvs0 + s1
with 0 ≤ s1 < pv. �

When there’s possible ambiguity for where these classes are defined
(e.g. if we work over multiple different fields simultaneously) we’ll in-
clude a superscript like τXi (j) to mean these classes are defined inside
CT(i;X) ⊗ Z(p). We collect here a number of results on the rings
CT(i;X).
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Lemma 3.5 ([Mac19, Lemma 3.4]). Let F/k be a finite field extension
and πF/k : XF → X the projection. Then the composition

CTj(i;X) ⊂ CHj(X)
π∗
F/k−−→ CHj(XF )

of the inclusion and flat pullback π∗F/k has image contained in CTj(i;XF ).

Moreover, if the composition (resp. this composition with Z(p)-coefficients)

CTj(i;XF ) ⊂ CHj(XF )
πF/k,∗−−−→ CHj(X)

of the inclusion and proper pushforward πF/k,∗ has image contained in

CTj(i;X) (resp. has image contained in CTj(i;X) ⊗ Z(p)) then the
projection formula holds for πF/k,∗, π

∗
F/k and the compositions

π∗F/k ◦ πF/k,∗ and πF/k,∗ ◦ π∗F/k
are both multiplication by [F : k]. �

Lemma 3.6 ([Kar17b, Proposition 3.5] and [Mac19, Lemma 3.5]). Let
F/k be a finite extension splitting A and πF/k : XF → X the projection.
Then the composition

CTj(i;XF ) ⊂ CHj(XF )
πF/k,∗−−−→ CHj(X)

of the inclusion and the proper pushforward πF/k,∗ has image contained

in CTj(i;X) for any j ≥ 0 and for any i ≥ 1. �

Lemma 3.7 ([Kar17b, Proposition 3.5]). Let j ≥ 0 be an integer and,
in the notation above, let F = Ln−vp(j). Then the composition

CTj(1;XF ) = CHj(XF )
πLF /k,∗−−−−→ CHj(X)

has image contained in CTj(1;X). Further, this composition is surjec-
tive onto CTj(1;X). �

The proof of Theorem 3.1 follows a technique developed in [Kar17b]
to compute the Chow ring of a generic Severi–Brauer variety. This
technique was also used in [KM19] to compute the Chow ring of some
Severi–Brauer varieties with prescribed reduced behavior. Essentially,
we use the projection formula to show that any element of CHi(X)⊗Z(p)

that can be realized as a polynomial of CH-Chern classes is a multiple
of τ1(dim(X)− i) for any 0 ≤ i ≤ p− 2.

Lemma 3.8. Let SX = {i1 < · · · < ik} be the level set of X ([Mac20,
Def. 5.2]). Let j ≥ 0 be an integer and let α be an element of CHj(X)⊗
Z(p) that can be realized as a polynomial in CH-Chern classes. Then α

is contained in the subgroup of CHj(X)⊗ Z(p) generated by elements

τ1(a0)τpi1 (a1) · · · τpik (ak)
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where a0 + · · ·+ ak = j for some integers a0, ..., ak ≥ 0.

Proof. By [KM19, Proposition A.5], every polynomial in CH-Chern
classes is a polynomial in the Chern classes of {ζX(i)}i where i ∈
SX ∪ {0}. Grouping terms using Proposition 3.4 gives exactly these
generators. �

Now we separate the proof of Theorem 3.1 into two cases. We want
to show that each generator from Lemma 3.8 is contained in CT(1;X)⊗
Z(p). To do this we note that either τ1(a0) appears in such a generator
with a0 > 0 or this term doesn’t appear at all. The latter case is easy
to handle.

Lemma 3.9. Let S = {i1 < · · · < ik} be an arbitrary collection of
integers. Let a1, ..., ak ≥ 0 be integers such that pn−p+1 ≤ a1+· · ·+ak.
Then

τpi1 (a1) · · · τpik (ak)

is contained in CT(1;X)⊗ Z(p).

Proof. Since a1 + · · ·+ak ≥ pn− p+ 1 by assumption, there must exist
an index r with ar ≥ pn−ir . Indeed, if this was false then for every
1 ≤ r ≤ k there would be an inequality ar < pn−ir . Since pn−ir < pn−r

this would imply the inequality

a1 + · · ·+ ak <
k∑
l=1

pn−l <
n∑
l=1

pn−l =
pn − 1

p− 1
.

But since one also has

pn − 1

p− 1
< pn − p+ 1

for all p > 2 and for all n > 1 this can’t happen.

Assume then that ar ≥ pn−ir for some 1 ≤ r ≤ k. It follows from
the proof of [KM19, Corollary A.13] there is an element x in CH(XLn)
with

πLn/k,∗(x) = τpir (ar).

Applying the projection formula to the product τpi1 (a1) · · · τpik (ak) and
using Lemma 3.6 gives the result. �

On the other hand, if τ1(a0) appears in the product of such a gen-
erator then the same proof becomes a little more complicated. We’ll
need the following lemma.
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Lemma 3.10. Let 0 ≤ j ≤ n be an integer. Define

nj = vp(rk(ζX(pj))) and ai,j = vp(rk(ζXLi
(pi))).

Let πLi/k : XLi
→ X be the projection along Li/k. Then there’s an

equality

π∗Li/k
(τXpj (k)) = βji,kτ

XLi

pj
(k)

for some βji,k ∈ Z(p) with

vp(β
j
i,k) =

{
nj − ai,j − vp(k/pai,j) if k = 0 (mod pai,j)

nj − ai,j if k 6= 0 (mod pai,j).

Proof. The proof follows the lines of [KM19, Lemma A.12]. Pulling
back the total CH-Chern polynomial of ζX(pj) to Li we find

π∗Li/k
ct(ζX(pj)) = ct(ζXLi

(pj))p
nj−ai,j

=
(

1 + τ
XLi

pj
(1)t+ · · ·+ τ

XLi

pj
(pai,j)tp

ai,j
)pnj−ai,j

= 1 + βji,1τ
XLi

pj
(1)t+ · · ·+ βj

i,pnj τ
XLi

pj
(pnj)tp

nj
.

The p-adic valuations of the βji,k can be determined by the multinomial
formula. This is done explicitly in [KM19, Lemma B.4]: set r = ai,j
and s = nj. �

Proof of Theorem 3.1. We proceed by showing that every generator as
in Lemma 3.8 is contained in CT(1;X)⊗ Z(p). If in such a generator

τ1(a0)τpi1 (a1) · · · τpik (ak)

one has a0 = 0 then we can apply Lemma 3.9. We’re left in the case
a0 > 0.

Set v = vp(a0) and let F = Ln−v (if v ≥ n then the claim follows
from the proof of [KM19, Corollary A.13]). Now Lemma 3.7 shows
that there is an element x ∈ CHa0(XF )⊗Z(p) so that the pushforward
of x along the projection πF/k : XF → X is

πF/k,∗(x) = τX1 (a0).

Since one has πF/k,∗ ◦ π∗F/k = [F : k] = pn−v by construction of F and,
one has

π∗F/k(τ
X
1 (a0)) = β0

n−v,a0τ
XF
1 (a0)

with vp(β
0
n−v,a0) = n− v by Lemma 3.10, it follows that x = ατXF

1 (a0)
for some α ∈ Z(p) not divisible by p.



CONNECTIVE K-THEORY OF SOME SEVERI–BRAUER VARIETIES 9

Applying the projection formula one finds

τX1 (a0)τ
X
pi1 (a1) · · · τXpik (ak) = πF/k,∗(ατ

XF
1 (a0))τ

X
pi1 (a1) · · · τXpik (ak)

= πF/k,∗

(
ατXF

1 (a0) · π∗F/k
(
τXpi1 (a1) · · · τXpik (ak)

))
= πF/k,∗

(
βατXF

1 (a0)τ
XF

pi1
(a1) · · · τXF

pik
(ak)

)
.

We won’t use it but, the coefficient β can also be explicitly determined
by Lemma 3.10. We claim that

τXF

pi1
(a1) · · · τXF

pik
(ak)

is contained in πLn/F,∗
(
CH(XLn)⊗ Z(p)

)
⊂ CT(1;XF )⊗ Z(p). Indeed,

this is true by Lemma 3.9 since there is an integer 1 ≤ r ≤ k with
ar ≥ pv−ir . In particular, there is an element y ∈ CH(XLn)⊗Z(p) with

τX1 (a0)τ
X
pi1 (a1) · · · τXpik (ak) = πF/k,∗

(
βατXF

1 (a0)τ
XF

pi1
(a1) · · · τXF

pik
(ak)

)
= πF/k,∗

(
βατXF

1 (a0)πLn/F,∗(y)
)

= πF/k,∗
(
πLn/F,∗

(
y · π∗Ln/F

(
βατXF

1 (a0)
)))

= πLn/k,∗
(
yπ∗Ln/F

(
βατXF

1 (a0)
))

and this last element is contained in CT(1;X)⊗Z(p) by Lemma 3.6. �

4. Connective K-theory

Throughout this section we let X be an arbitrary k-variety. We write
M (X) for the category of coherent sheaves on X. The category M (X)
is abelian and admits a filtration

0 = M−1(X) ⊂M0(X) ⊂ · · · ⊂Mn(X) = M (X)

by Serre subcategories Mi(X) defined as the category of coherent
sheaves on X supported in dimension-i or less. Each category Mi(X)
is also abelian and it makes sense to consider the Grothendieck group
K(Mi(X)).

We refer to [Cai08] for our treatment of the algebraic connective
K-theory CK(X) of X. By definition CK(X) is the sum of groups
CKi(X) that can be realized as the image of the induced map on K-
groups under the exact inclusion Mi(X) ⊂Mi+1(X):

CK(X) =
⊕
i∈Z

CKi(X) and CKi(X) = Im (K(Mi(X))→ K(Mi+1(X))) .

When X is smooth, connected, and of dimension-n the group CK(X)
has the structure of a commutative and graded ring. In this case, we
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often write CKi(X) for the group summand CKn−i(X).

For any integer i, the group CKi(X) has the structure of left K(X)-
module (where K(X) is the Grothendieck ring of locally free sheaves
on X) induced by the tensor product of sheaves. Indeed, tensoring by a
locally free sheaf is exact on Mn−i(X) and this descends to a morphism

K(X)→ End(CKi(X))

sending a class [F ] to the endomorphism sending [G] to [F ⊗ G].

In some instances, it’s known that CKi(X) can be naturally asso-
ciated with a subgroup of the Grothendieck group G(X) of coherent
sheaves on X. More precisely, for any i ∈ Z one can consider the
morphism

ψiX : CKi(X)→ τ i(X)

to the ith piece of the topological filtration τ i(X) ⊂ G(X) defined via
the map

Im (K(Mn−i(X))→ K(Mn−i+1(X)))→ Im (K(Mn−i(X))→ K(M (X)))

induced by the inclusion Mn−i+1(X) ⊂ M (X); for i ≤ 2 the map
ψiX is an isomorphism [Kar20, Remark A.6]. In general, if we identify
K(X) = G(X) by the canonical map, then the K(X)-module structure
on CKi(X) is related to the ring structure of CK(X) via ψiX .

Lemma 4.1. Let β be the Bott element, i.e. the element of CK−1(X)
represented by the class of OX . Then the diagram below, with top
horizontal arrow induced by the K(X)-module structure morphism on
CKi(X) and bottom horizontal arrow the ring structure map on CK(X),
is commutative for every i, j ∈ Z.

τ j(X)⊗ CKi(X) CKi(X)

CKj(X)⊗ CKi(X) CKi+j(X)

ψj
X⊗1 ·βj

In particular, the composition

τ j(X)⊗ CKi(X)→ K(X)⊗ CKi(X)→ CKi(X)

has image contained in βjCKi+j(X).

Proof. This follows from the fact that the multiplication by β map and
the map induced by the inclusion Mn−i(X)→Mn−i+2(X) are identical
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on algebraic connective K-theory, cf. [Cai08, Proof of Theorem 7.1]. In
particular, one has

ψj(F) · G = (βj · F) · G = βj · (F · G) = ψj(F · G)

for all coherent sheaves F and G supported in codimension-j and
codimension-i respectively. �

Alternatively, one can relate the K(X)-module structure on CK(X)
to the ring structure in the following way. Give the tensor product
CKi(X)⊗CKj(X) a K(X)-module structure for any i, j ∈ Z by acting
on the left of either CKi(X) or CKj(X). The multiplication map is
then a morphism of K(X)-modules.

The following lemma shows the relationship betweenK-Chern classes,
CK-Chern classes, and the K(X)-module structure on CK(X).

Lemma 4.2. Let F and G be two vector bundles on X. Then

cKi (F) · cCK
j (G) = βicCK

i (F)cCK
j (G)

for any pair of integers i, j ≥ 0.

Proof. The multiplication map

CKi(X)⊗ CKj(X)→ CKi+j(X)

is a morphism of left K(X)-modules when the tensor product is given
its left K(X)-module structure. This means that, by possibly moving
to a successive chain of projective bundles over X and applying the
projective bundle formula [Cai08, Theorem 6.3], it suffices to check the
formula when i = j = 1 and when F ,G are both line bundles; here the
claim is obvious. �

Theorem 4.3. Consider the following statements:

(1) CH(X) is generated as a ring by CH1(X)
(2) CK(X) is generated as a K(X)-algebra by CK1(X) and β
(3) CKi(X) is generated as a K(X)-module by polynomials of CK-

Chern classes for every i ∈ Z
(4) CKi(X) is generated as a K(X)-module by polynomials of CK-

Chern classes for some i ∈ Z
(5) CKi(X) is generated additively by polynomials of CK-Chern classes

and βCKi+1(X) for some i ∈ Z
(6) CHi(X) is generated additively by polynomials of CH-Chern classes

for some i ∈ Z.

Then (1) ⇐⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5) ⇐⇒ (6).
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Proof. (1) =⇒ (2): For any i ∈ Z the exact sequence of [Cai08,
Theorem 7.1]

0→ βCKi+1(X)→ CKi(X)→ CHi(X)→ 0

shows that CKi(X) is generated additively by polynomials of first CK-
Chern classes (lifts of the generators of CHi(X)) and βCKi+1(X). Now
Lemma 4.2 shows that βCKi+1(X) is generated as a K(X)-module by
polynomials of first CK-Chern classes as well.

(2) =⇒ (1): The canonical surjection CK(X)→ CH(X) takes CK-
Chern classes to CH-Chern classes and has kernel βCK(X). Normally,
this would imply CH(X) is generated as a K(X)-algebra by CH1(X)
but, in this case any element of K(X) = Z ⊕ τ 1(X) acts on CH(X)
only via by its rank because of Lemma 4.1.

(2) =⇒ (3) =⇒ (4): This is obvious.

(4) =⇒ (5): Let {pi}i∈I be a set of polynomials in CK-Chern classes
that generate CKi(X) as a K(X)-module. Then every element x of
K(X) can be written as x = rk(x) + (x− rk(x)) where rk : K(X)→ Z
is the rank map. The element x − rk(x) is contained in τ 1(X) so for
any index i one finds

xpi = rk(x)pi + (x− rk(x))pi = rk(x)pi + βz

for some element z of CKi+1(X) by Lemma 4.1.

(5) ⇐⇒ (6): One can use again that the surjection CKi(X) →
CHi(X) takes CK-Chern classes to CH-Chern classes and, by [Cai08,
Theorem 7.1], has kernel βCKi+1(X). �

Remark 4.4. In general, the implications (5) =⇒ (4) =⇒ (3) =⇒
(2) between the properties of Theorem 4.3 are false.

Remark 4.5. Fix an integer `. Suppose that X is a smooth and
connected variety satisfying one of either (1)-(2), or (5)-(6) for all i ≥
`, of Theorem 4.3. Then every projective bundle over X and every
localization of X satisfies the same properties. To see this, one can use
the projective bundle formula and the localization exact sequence for
the Chow ring.

Theorem 4.3 can be combined with [Kar20, Theorem 2.2] and Theo-
rem 3.1 to give the following corollary. We recall that there are canon-
ical surjections

ψiX : CKi(X)→ τ i(X) and ϕiX : CHi(X)→ griτG(X).
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Here ϕiX is defined by taking the class of an irreducible variety V to
the class of the structure sheaf [OV ].

Corollary 4.6. Let X = SB(A) be the Severi–Brauer variety associ-
ated to a central simple k-algebra A with ind(A) = pn for some prime
p and some integer n ≥ 0. Assume that CHi(X) is generated by poly-
nomials of CH-Chern classes for all 0 ≤ i ≤ p− 2. Then the canonical
morphism

ψ
dim(X)−i
X : CKi(X)→ τi(X)

is an isomorphism for all 0 ≤ i ≤ p − 2, and CKi(X) is generated by
CK-Chern classes and βCKi−1(X). �

Regardless of any information coming from ϕiX we can still compute
τi(X).

Theorem 4.7. Let A be a division algebra with ind(A) = pn for some
prime p and some n ≥ 1 and let X = SB(A). Identify G(Xk)

∼=
Z[x]/(1−x)p

n
where x = OXk

(−1). Set h = 1−x and identify G(X) ⊂
G(Xk) via the pullback.

Then the ith piece of the topological filtration τi(X) on G(X) is

τi(X) =
⊕
j≤i

pnhp
n−1−jZ = pnτi(Xk)

for every i ≤ p− 2.

Proof. There’s an equality

τi(Xk) =
⊕
j≤i

hp
n−1−jZ

so, in order to prove the result it suffices to show that τi(X) = pnτi(Xk).
Note that the containment pnτi(Xk) ⊂ τi(X) is proved in [Mac20,
Lemma 5.7] so that we only need to show the reverse containment.

For any integer 0 ≤ i ≤ p − 2 (the nontrivial cases), an arbitrary
element for τi(X) ⊂ τi(Xk) is of the form

pn−1∑
j=pn−1−i

sjh
j

for some integers sj. Writing this element as a sum of powers of ele-
ments al(1 − h)p

n−1−l with al = ind(A⊗l) (see [Kar98, Theorem 3.1])
gives an equality

(no.1)

pn−1∑
j=pn−1−i

sjh
j =

pn−1∑
l=0

tlal(1− h)p
n−1−l
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with tl some integers. Since powers of h form a basis for G(Xk) we can
expand the right side of (no.1) and compare the coefficients of hj to
find

(no.2) sj =
∑
l≥j

tlal

(
pn − 1− l
pn − 1− j

)
.

Now all of the al that appear in (no.2) have pn−1 ≥ l ≥ j ≥ pn−p+1.
Hence l is prime-to-p and al = ind(A⊗l) = pn by Remark 2.1. It
follows that τi(X) is contained in pnτi(Xk) for every 0 ≥ i ≥ p − 2 as
claimed. �

It follows immediately from Theorem 4.7 that one can describe the
associated graded objects grτ,iG(X) for the topological filtration on
G(X) in the degrees 0 ≤ i ≤ p− 2.

Corollary 4.8. Let X = SB(A) be the Severi–Brauer variety associ-
ated to a central simple k-algebra A with index ind(A) = pn for some
prime p and some integer n ≥ 0. Then grτ,iG(X) is torsion free for all
0 ≤ i ≤ p− 2. �
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