
ON THE ALGEBRAIZABILITY OF FORMAL DEFORMATIONS IN

K-COHOMOLOGY
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Abstract. We show that algebraizability of the functors R1π∗KM
2,X and R2π∗KM

2,X is a stable birational

invariant for smooth and proper varieties π : X → k defined over an algebraic extension k of Q. The same

is true for the étale sheafifications of these functors as well.
To get these results we introduce a notion of relative K-homology for schemes of finite type over a finite

dimensional, Noetherian, excellent base scheme over a field. We include this material in an appendix.

1. Introduction

Let k/Q be an algebraic field extension and let π : X → k be a smooth and proper k-variety. In [Blo75],
Bloch gives a cohomological criterion for the pro-representability of the higher direct image Riπ∗K2,X of
the 2nd K-theory sheaf K2,X on the big Zariski site of X. Specifically, if F iX : Artk → Ab is defined on the
category Artk of artinian local k-algebras (A,mA) with residue field A/mA ∼= k by

(1) F iX(A) = ker
(
Hi(XA,K2,XA

)→ Hi(X,K2,X)
)

then Bloch shows that F iX is pro-representable if and only if Hi(X,OX) = Hi+1(X,OX) = 0.
The cohomology of the structure sheaf OX is well-known to be a stable birational invariant of X, [CR11].

Combined with Bloch’s criterion, this implies that for X,Y smooth, proper, and stably birational varieties
over k, the functor Riπ∗K2,X is pro-representable (at any L-point for any finite field extension L/k) if and
only if Riϕ∗K2,Y is as well, where ϕ : Y → k is the structure map of Y . We show in Theorems 3.4 and 4.4
below that, in either the case i = 1 or i = 2, the algebraizability of the functor Riπ∗K2,X is also a stable
birational invariant of X. (Below we will replace K2,X with the Milnor K-theory sheaf KM2,X . The two are

canonically isomorphic, so the difference is mostly notational.)
The proofs of Theorems 3.4 and 4.4 rely on the use of weak factorization, as well as a description of both

K-cohomology groups and the algebraic de Rham cohomology groups of projective bundles and blow ups.
We include, in an appendix, an overview of the necessary results on K-cohomology which also corrects some
minor errors in the development of these groups available in the literature. Throughout this article we also
point out how to apply these methods to achieve the same result for the étale sheafification (Riπ∗KM2,X)ét of

the higher direct image functor Riπ∗KM2,X for i = 1 or i = 2.

The functor Rnπ∗KMn,X can be thought of as a direct generalization to “codimension-n cycle classes” of

the Zariski sheafification of the Picard functor PicX/k,(Zar) = R1π∗KM1,X , the latter of which is well-known

to be representable for sufficiently nice varieties X. The functors Riπ∗KMn,X for i ̸= n can also be thought of
as a “higher generalization” of the Picard functor but, varying the weight and codimension independently.
Algebraizability of the functors Riπ∗KMn,X essentially means that for any finite field extension L/k and for

any L-point ξ of Riπ∗KMn,X , one can find a pointed finite type k-scheme (Z, z) with residue field k(z) ∼= L
and a deformation of ξ on Z which formally locally around z is the universal deformation of ξ.

While not implying representability directly, it is known by [Art69, Theorem 4.1] that if (Riπ∗KMn,X)ét is

both algebraizable and relatively representable then (Riπ∗KMn,X)ét is in fact representable. One is naturally

led to wonder if (Riπ∗KMn,X)ét is representable in any interesting examples.
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2. Background

Let π : X → k be the structure map of an arbitrary k-variety X. We write KMn,X for the nth Milnor

K-theory sheaf on the big Zariski site Sch/X (since we will assume that k has characteristic zero below, and
also n = 2, one could use the isomorphic Quillen K-theory sheaf to the same effect). We write Riπ∗KMn,X
for the associated Zariski sheaf on Sch/k. For any k-scheme T , we have

(2) Riπ∗KMn,X(T ) = H0(T,RiπT∗KMn,XT
)

where πT : XT → T is the map obtained from π by base change.

Remark 2.1. Let (A,mA) and (B,mB) be local L-algebras for any field extension L/k. If T = Spec(A) and
T ′ = Spec(B), then for any morphism ρ : T ′ → T the induced pullback map

(3) H0(T,RiπT∗KMn,XT
)→ H0(T ′, RiπT ′∗KMn,XT ′ )

is equivalent to the natural map of groups Hi(XT ,KMn,XT
)→ Hi(XT ′ ,KMn,XT ′ ).

We say that an abelian sheaf F on the big Zariski site Sch/k is pro-representable if it is so around any
L-point ξ ∈ F(Spec(L)) for any finite field extension L/k (see [Sch68] for the definition of a pro-representable
functor of artin local L-algebras). Since F is a sheaf of groups, it is enough to check that this is true only
around the identity element of F(Spec(L)). In this case, being pro-representable is equivalent to the existence
of a complete local noetherian L-algebra (R,mR) such that R/mR ∼= L, the quotient R/mtR is a local artinian
L-algebra for all t ≥ 2, and such that there is a natural (in A) isomorphism

(4) Homlocal L-alg.(R,A) ∼= ker (F(Spec(A))→ F(Spec(L)))

for any local artinian L-algebra (A,mA). From now on, for any pointed L-scheme (X,x) with residue field
L(x) ∼= L or for any L-algebra A with maximal ideal m admitting an isomorphism A/m ∼= L, we write

(5) Def(F)(X) = ker (F(X)→ F(x)) or Def(F)(A) = ker (F(Spec(A))→ F(Spec(A/m)))

for the sets of X-deformations, or A-deformations, of the identity of F(Spec(L)) respectively.
We say that an abelian sheaf F which is pro-representable is effectively pro-representable if it is so around

any L-point ξ ∈ F(Spec(L)) for any finite field extension L/k. Again, since F is a sheaf of groups, it is
enough to check this condition around the identity element of the group F(Spec(L)). Then F is effectively
pro-representable if the formal deformation corresponding to the identity of R is effective, i.e. if there exists
an element uR ∈ Def(F)(R) := ker(F(Spec(R)→ F(Spec(L))) mapping to the identity of R under the map

(6) Def(F)(R)→ Homlocal L-alg.(R,R) ∼= lim←−
t

Def(F)(R/mtR).

For any complete noetherian local L-algebra (S,mS) with residue field S/mS ∼= L such that S/mtS is an

artianian local L-algebra for all t ≥ 2, we will write Def(F)(S) := lim←−t Def(F)(S/mtS) for the set of formal

S-deformations of the identity of F(Spec(L)).

Remark 2.2. Now let (S,mS) be any complete noetherian local L-algebra such that S/mS ∼= L and S/mtS
is an artinian local L-algebra for all t ≥ 2. If F is an effectively pro-representable functor, then any formal
S-deformation ξ̄ ∈ Def(F)(S) is effective, i.e. there exists an element ξ ∈ Def(F)(S) mapping to ξ̄. Indeed,

there exists a local L-algebra homomorphism f : R→ S so that F(f)(idR) = ξ̄ in the diagram

(7)

Def(F)(S) Def(F)(S)

Def(F)(R) Def(F)(R)

F(f) F(f)

by the universal property of the L-algebra (R,mR).

We say that an abelian sheaf F which is effectively pro-representable is algebraizable if it is so around any
L-point ξ ∈ F(Spec(L)) for any finite field extension L/k or, equivalently, if it is so around the identity for
all such fields L/k. So an abelian sheaf F is algebraizable if there exists a finite type k-scheme X, a closed
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point x ∈ X with residue field k(x) ∼= L, an element uX ∈ Def(F)(X), and an isomorphism ÔX,x ∼= R of
local L-algebras such that uX induces the identity of R under the canonical map

(8) Def(F)(X)→ Def(F)(ÔX,x) ∼= Homlocal L-alg.(R, ÔX,x) ∼= Homlocal L-alg.(R,R).

Since KMn,X is locally of finite presentation for all n ∈ Z by construction, it follows from [Sta21, Tag 0A37]

that Riπ∗KMn,X is locally of finite presentation whenever π is quasi-compact and quasi-separated. Similarly,
if π is quasi-compact and quasi-separated then the sheafifications

(9)
(
Riπ∗KMn,X

)
fppf

and
(
Riπ∗KMn,X

)
ét

for the fppf and étale topologies are locally of finite presentation by the proof of [Sta21, Tag 049O]. Thus, by
Artin’s Algebraization theorem [Art69, Theorem 1.6], for fixed i and n the functor Riπ∗KMn,X is algebraizable
if it is effectively pro-representable.

Bloch shows in [Blo75, Theorem 0.2] that for a smooth and proper variety X defined over an algebraic
extension k/Q, the functor Riπ∗KM2,X is pro-representable if and only if Hi(X,OX) = Hi+1(X,OX) = 0.

Moreover, Bloch gives a canonical isomorphism Def(Riπ∗KM2,X)(A) ∼= Hi(XL,Ω
1
XL

)⊗LmA for any artin local

L-algebra (A,mA) with residue field A/mA ∼= L and for any finite field extension L/k. In this setting, the
representing ring R as above is canonically isomorphic to a formal completion of the symmetric L-algebra
of the dual L-vector space V ∨ where V = Hi(XL,Ω

1
XL

).

3. In the case when i = 2

Throughout this section we fix an algebraic extension k/Q. We first deal with the case i = 2 where our
functor R2π∗KM2,X is comparable to the familiar Chow group of codimension two cycles.

Remark 3.1. Let R = k[[t1, ..., tr]] be a ring of formal power series over k in finitely many variables. LetX be
a smooth scheme, geometrically connected and quasi-compact over k. Then the product X ′ = X×k Spec(R)
is a connected, regular, and excellent Noetherian scheme of finite Krull dimension. Indeed, if U = Spec(B)
is an affine open subset of X, then B is a finitely generated k-algebra and B⊗kR is Noetherian by Hilbert’s
basis theorem. Thus X ′ is locally Noetherian and the projection X ′ → Spec(R) is quasi-compact, so X ′ is
locally Noetherian and quasi-compact, hence Noetherian.

Since X is geometrically connected and R is integral, it follows that X ′ is connected, [Sta21, Tag 0385].
One can bound the dimension of X ′ in terms of the dimension of X and Spec(R) using [Sta21, Tag 0AFF]
and [Sta21, Tag 04MU]. Excellence of X ′ follows from [Sta21, Tag 07QW].

To see that X ′ is regular, let x ∈ X ′ be a point. Let y ∈ Spec(R) be the image of the point x under the
second projection X ′ → Spec(R), and write my ⊂ OSpec(R),y for the maximal ideal of the local ring at y.
The induced ring map OSpec(R),y → OX′,x is both local and, since X is smooth, flat. Since there exists a
canonical isomorphism

OX′,x/myOX′,x
∼= OX′

y,x
,

between the fiber over y of the local ring of x in X ′ and the local ring of x in the fiber over y, and since X
is smooth, the local ring OX′

y,x
∼= OX′,x/myOX′,x is regular. As OSpec(R),y is also regular, it follows from

[Mat86, Theorem 23.7] that OX′,x is regular too.
In particular, the Gersten conjecture is known to hold for the local rings of X ′. (For Quillen’s K-theory

in the case of finite type k-algebras this is due to Quillen [Qui73] and for Quillen’s K-theory for more general
regular rings by Panin [Pan03]. For Milnor’s K-theory this result is due to Kerz [Ker09] when the base field
contains enough elements, e.g. if it is infinite.)

Lemma 3.2. Fix an algebraic extension k/Q and let π : X → k be a smooth, proper, and geometrically
connected scheme. Let E be a finite rank locally free sheaf on X and φ : P(E) → k be the structure map of
the associated projective bundle. Then R2π∗KM2,X is effectively pro-representable if and only if R2φ∗KM2,P(E)
is effectively pro-representable.

The above statement also holds replacing all Zariski sheaves with their étale sheafifications.

Proof. It suffices to work only over the base field k, noting that k/Q is arbitrary. Let R = k[[t1, ..., tr]] be a
power series ring in finitely many variables with maximal ideal mR. Set S = Spec(R) and St = Spec(R/mtR).
Then, by Remark 3.1, the Gersten conjecture holds for the local rings of both XS and P(E)S so that

H2(XS ,KM2,XS
) ∼= CH2(XS) and H2(P(E)S ,KM2,P(E)S ) ∼= CH2(P(E)S)

https://stacks.math.columbia.edu/tag/0A37
https://stacks.math.columbia.edu/tag/049O
https://stacks.math.columbia.edu/tag/0385
https://stacks.math.columbia.edu/tag/0AFF
https://stacks.math.columbia.edu/tag/04MU
https://stacks.math.columbia.edu/tag/07QW
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where for any smooth and geometrically connected k-scheme Y , we write CH2(YS) for the (relative) Chow
group of codimension-2 cycles on YS modulo rational equivalence (cf. [Ful98, Chapter 20]).

Now suppose that R2π∗KM2,X is pro-representable. By [Blo75, Theorem (0.2)], there is a natural in (A,mA)

isomorphism Def(R2π∗KM2,X)(A) ∼= H2(X,Ω1
X) ⊗k mA for any artinian local k-algebra (A,mA). Thus there

is a commutative diagram as below (using Remark 2.1).

(10)

0 Def(R2π∗KM2,X)(R) CH2(XS) CH2(X) 0

0 H2(X,Ω1
X)⊗k mR lim←−t H2(XSt ,KM2,XSt

) H2(X,KM2,X) 0

Similarly, there is a commutative diagram for P(E) as so:

(11)

0 Def(R2φ∗KM2,P(E))(R) CH2(P(E)S) CH2(P(E)) 0

0 H2(P(E),Ω1
P(E))⊗k mR lim←−t H2(P(E)St

,KM2,P(E)St
) H2(P(E),KM2,P(E)) 0.

The bottom rows in the diagrams above are canonically right-split by the pull-back along the structure
maps for X and P(E) respectively. Using the projection map P(E) → X, the two diagrams above can
be compared (via pull-back) and this comparison respects these splittings. If E has rk(E) = 1, then the
comparison is an isomorphism everywhere. Otherwise, if rk(E) > 1, then there is a diagram of corresponding
cokernels:

(12)

0 Def(PicX/k,(Zar))(R) Pic(XS)⊕A Pic(X)⊕A 0

0 H1(X,OX)⊗k mR lim←−t H1(XSt
,KM1,XSt

) H1(X,KM1,X) 0.

Here the nonzero column on the right (and the middle object in the top row) can be identified with use of the
projective bundle formula (and we have A = 0 if rank(E) = 2 and A = Z if rank(E) ≥ 3); the identification
of the top-left object follows from this. The identification of the bottom-left object seems to be well-known,
and the middle term in the bottom row can be identified using these facts together with the splittings of the
bottom rows of the two previous diagrams.

Altogether, this gives a commutative ladder with exact rows:

(13)

0 Def(R2π∗KM2,X)(R) Def(R2φ∗KM2,P(E))(R) Def(PicX/k,(Zar))(R) 0

0 H2(X,Ω1
X)⊗k mR H2(P(E),Ω1

P(E))⊗k mR H1(X,OX)⊗k mR 0.

Here the rightmost vertical arrow is an isomorphism by Grothendieck’s existence theorem, cf. [Sta21, Tag
089N]. Therefore, if either the left or the middle vertical arrow is a surjection, then the other is as well.
By varying the power series ring R, and by using Remark 2.2, it follows that R2π∗KM2,X is effectively pro-

representable if and only if R2φ∗KM2,P(E) is effectively pro-representable. The analogous theorem for the

étale sheafifications (R2π∗KM2,X)ét and (R2φ∗KM2,P(E))ét is proved similarly noting that, in each of the above

diagrams, all splittings descend to Galois invariants. □

Lemma 3.3. Fix an algebraic extension k/Q and let π : X → k be a smooth, proper, and geometrically
connected scheme. Let Z ⊂ X be a smooth subscheme of X and let φ : BlZ(X) → k be the structure map
of the blow-up of X along Z. Then R2π∗KM2,X is effectively pro-representable if and only if R2φ∗KM2,BlZ(X)

effectively pro-representable.
The above statement also holds replacing all Zariski sheaves with their étale sheafifications.

https://stacks.math.columbia.edu/tag/089N
https://stacks.math.columbia.edu/tag/089N
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Proof. It suffices to assume that Z is smooth and connected with codim(Z,X) ≥ 2. As before, let R =
k[[t1, ..., tr]] be a power series ring in finitely many variables with maximal ideal mR. Set S = Spec(R). We
write NZ/X for the normal sheaf on Z for the inclusion Z ⊂ X and we write Θ : P(NZ/X) → X for the
associated projective bundle map. There’s an isomorphism Pic(P(NZ/X)) ∼= Θ∗Pic(Z)⊕ Zc1(OP(NZ/X)(1)).

By the blow-up formula for regular embeddings [Ful98, Proposition 6.7 (e)] there is an exact sequence

0→ CH2(X)→ CH2(BlZ(X))→ Pic(P(NZ/X))/A→ 0

where A = 0 if codim(Z,X) > 2 or, if codim(Z,X) = 2, then A is the infinite cyclic subgroup generated
by Θ∗c1(NZ/X) + c1(OP(NZ/X)(1)). Since Remark 3.1 applies to the triple (XS , ZS ,BlZS

(XS)) and, due to

[Sta21, Tag 0E9J], the blow-up formula also provides an exact sequence

0→ CH2(XS)→ CH2(BlZS
(XS))→ Pic(P(NZS/XS

))/AS → 0

with AS characterized by the codimension of Z ⊂ X similarly.
If codim(Z,X) = 2, then pulling back induces isomorphisms

Pic(Z) ∼= Pic(P(NZ/X))/A and Pic(ZS) ∼= Pic(P(NZS/XS
))/AS .

Now, regardless of the codimension of Z in X, the above sequences on Chow groups produce an exact
sequence

(14) 0 Def(R2π∗KM2,X)(R) Def(R2φ∗KM2,BlZ(X))(R) Def(PicZ/k,(Zar))(R) 0.

If either of R2π∗KM2,X or R2φ∗KM2,BlZ(X) are pro-representable, then pulling back along the map BlZ(X)→ X

induces an exact commutative ladder

(15)

0 Def(R2π∗KM2,X)(R) Def(R2φ∗KM2,BlZ(X))(R) Def(PicZ/k,(Zar))(R) 0

0 H2(X,Ω1
X)⊗k mR H2(BlZ(X),Ω1

BlZ(X))⊗k mR H1(Z,OZ)⊗k mR 0.

The rightmost vertical arrow is an isomorphism. Hence, if either of the left or the middle vertical arrows
were surjective, then the other would be as well. This allows us to conclude as before. □

Theorem 3.4. Fix an algebraic extension k/Q and let πX : X → k and πY : Y → k be two smooth, proper,
and geometrically connected k-schemes. Suppose that X and Y are stably birational over k.

Then (R2πX∗KM2,X)τ is algebraizable if and only if (R2πY ∗KM2,Y )τ algebraizable for either τ = Zar, ét.

Proof. This follows immediately from the content of Section 2, Lemma 3.2, Lemma 3.3, and the Weak
Factorization theorem over k, [W lod09, Theorem 0.0.1 (1)]. Namely, suppose (R2πX∗KM2,X)τ is algebraizable
and let φX : X × Pr → k and φY : Y × Ps → k be birationally equivalent k-schemes for some r, s ≥ 0.

Then the higher push forward functor (R2φX∗KM2,X×Pr )τ is effectively pro-representable by of Lemma 3.2
and so algebraizable. Any birational equivalence between the two schemes X×Pr and Y ×Ps can be factored
into a sequence of blow-ups and blow-downs at smooth centers, by the Weak Factorization theorem, so that
this implies (R2φY ∗KM2,Y×Ps)τ is then effectively pro-representable by Lemma 3.3 and hence algebraizable.

We can then conclude that (R2πY ∗KM2,Y )τ is effectively pro-representable, and hence algebraizable, by use of
Lemma 3.2 again. □

Example 3.5. Let k be an algebraic extension of Q and suppose that π : X → k is a smooth, proper, and
geometrically connected surface with geometric genus pg(X) = dim H0(X,Ω2

X) = 0. Then both R2π∗KM2,X
and (R2π∗KM2,X)ét are pro-representable by Bloch’s theorem [Blo75]. If, moreover, dim H1(X,OX) ≤ 1 then

this pro-representability is effective. To see this, one notes H1(X,OX) ∼= H2(X,Ω1
X). If the latter vanishes,

then effectivity is trivial. Otherwise, it follows from [L2̈0, Theorem 1.1].
By Theorem 3.4, any smooth and proper variety ϕ : Y → k stably birational to such an X therefore has

algebraizable R2ϕ∗KM2,Y and (R2ϕ∗KM2,Y )ét.

https://stacks.math.columbia.edu/tag/0E9J
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4. In the case i = 1

The proof that R1π∗KM2,X is a stable birational invariant is similar to the case of R2π∗KM2,X , but relies on

a relative version of the K-cohomology groups of Rost [Ros96]. We include all of the necessary set-up for
these groups, along with the results about them that we will use here, in an appendix below.

Lemma 4.1. Let k be a field and let π : X → k be a proper scheme. Set A = H0(X,OX) and S = Spec(A).
Then the functor π∗KM1,X is representable by the group k-scheme Weil restriction ResS/k(Gm,S).

Proof. We first remark that, since A is a finite k-algebra as X is proper [Sta21, Tag 02O6], the Weil restriction
ResS/k(Gm,S) exists as a k-scheme, see [BLR90, 7.6, Theorem 4]. Now there exists a canonically defined
factorization of π into a composition

X
ϕ−→ S

ρ−→ k

and we use this factorization to define a natural transformation

ResS/k(Gm,S)→ π∗Gm,X = π∗KM1,X .
For any scheme T/k one has natural identifications

π∗Gm,X(T ) = HomX(TX ,Gm,X) = OTX
(TX)×,

where OTX
(TX)× is the group of units of the ring OTX

(TX), and

Homk(T,ResS/k(Gm,S)) = HomS(TS ,Gm,S) = OTS
(TS)×.

We take as our definition of a natural transformation the map

π∗Gm,X(T )→ Homk(T,ResS/k(Gm,S))

coming from taking global sections of the induced map OTS
→ ϕT∗OTX

. But note that since X → S is
proper, and TS → S is flat, the morphism OTS

→ ϕT∗OTX
is an isomorphism [Sta21, Tag 02KH]. □

Lemma 4.2. Fix an algebraic extension k/Q and let π : X → k be a smooth, proper, and geometrically
connected scheme. Let E be a finite rank locally free sheaf on X and φ : P(E) → k be the structure map of
the associated projective bundle. Then R1π∗KM2,X is effectively pro-representable if and only if R1φ∗KM2,P(E)
is effectively pro-representable.

The above statement also holds replacing all Zariski sheaves with their étale sheafifications.

Proof. We write S = Spec(R) for a power series ring R = k[[t1, ..., tr]]. Then the proof is exactly the same
as that of Lemma 3.2 with the following changes. First, with the notation as in the appendix, there are
isomorphisms (cf. Corollary A.16)

H1(XS ,KM2,XS
) ∼= A1(XS ;KM

2 ) and H1(P(E)S ,KM2,P(E)S ) ∼= A1(P(E)S ;KM
2 )

with the given K-cohomology groups. Since the lemma is trivial if rk(E) = 1, assume rk(E) > 1. Then the
pullback along the projection P(E)S → XS induces a short exact sequence

0→ A1(XS ;KM
2 )→ A1(P(E)S ;KM

2 )→ A0(XS ;KM
1 )→ 0

by the projective bundle formula. Similar to before there is then a commutative diagram

(16)

0 Def(R1π∗KM2,X)(R) Def(R1φ∗KM2,P(E))(R) Def(π∗KM1,X)(R) 0

0 H1(X,Ω1
X)⊗k mR H1(P(E),Ω1

P(E))⊗k mR H0(X,OX)⊗k mR 0.

Since π∗KM1,X is representable by Gm,k by Lemma 4.1, the rightmost vertical arrow is an isomorphism, and
the lemma follows as before. □

Lemma 4.3. Fix an algebraic extension k/Q and let π : X → k be a smooth, proper, and geometrically
connected scheme. Let Z ⊂ X be a smooth subscheme of X and let φ : BlZ(X) → k be the structure map
of the blow-up of X along Z. Then R1π∗KM2,X is effectively pro-representable if and only if R1φ∗KM2,BlZ(X)

effectively pro-representable.
The above statement also holds replacing all Zariski sheaves with their étale sheafifications.

https://stacks.math.columbia.edu/tag/02O6
https://stacks.math.columbia.edu/tag/02KH
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Proof. Write S = Spec(R) for a power series ring R = k[[t1, ..., tr]] for some integer r > 0. We can assume
Z is smooth and connected with codim(Z,X) ≥ 2. Note we have

H1(XS ,KM2,XS
) ∼= A1(XS ;KM

2 ) and H1(BlZS
(XS),KM2,BlZS

(XS))
∼= A1(BlZS

(XS);KM
2 ).

By the blow-up formula for relative K-homology, see Remark A.27 and Proposition A.28 below, there’s an
exact sequence

0→ A1(XS ;KM
2 )→ A1(BlZS

(XS);KM
2 )→ A0(ZS ;KM

1 )→ 0.

Similar to before, there is then a commutative diagram

(17)

0 Def(R1π∗KM2,X)(R) Def(R1φ∗KM2,BlZ(X))(R) Def(ρ∗KM1,Z)(R) 0

0 H1(X,Ω1
X)⊗k mR H1(BlZ(X),Ω1

BlZ(X))⊗k mR H0(Z,OZ)⊗k mR 0

where ρ : Z → k is the structure morphism of Z. Since ρ∗KM1,Z is representable by Gm,k by Lemma 4.1, the
rightmost vertical arrow is an isomorphism, and the lemma follows as before. □

As a result of the above two lemmas, we get:

Theorem 4.4. Fix an algebraic extension k/Q and let πX : X → k and πY : Y → k be two smooth, proper,
and geometrically connected k-schemes. Suppose that X and Y are stably birational over k.

Then (R1πX∗KM2,X)τ is algebraizable if and only if (R1πY ∗KM2,Y )τ algebraizable for either τ = Zar, ét. □

Example 4.5. In [CT83, Theorem C] it’s shown that if X is a geometrically rational surface over k with a
k-rational point, then the group H1(X,KM2,X) is isomorphic with the group of k-points of the k-torus that’s

dual to the Gal(Q/k)-module Pic(XQ).

It follows from Theorem 4.4 that if π : X → k is a rational surface over an algebraic field extension k/Q,
then R1π∗KM2,X and (R1π∗KM2,X)ét are also algebraizable since X is stably birational to Spec(k).

Acknowledgments. I’d like to thank Niranjan Ramachandran for both bringing my attention to the
problem of representability of higher K-cohomology groups which started this line of inquiry and for the
many conversations that we’ve had about this work during its genesis.

Appendix A. K-cohomology and relative K-homology

In Rost’s construction of K-(co)homology groups [Ros96], there is an underlying assumption that all
schemes considered are of finite type over a fixed perfect ground field. However, these assumptions aren’t
needed for many of the constructions (see Remark 2.8, ibid.) and, in this paper, we want to use many of the
properties of K-cohomology groups for much more general schemes (e.g. those of Remark 3.1).

The first objective for this appendix, then, is to set-up a generalized version of both K-cohomology groups,
and of relative K-homology groups, with the intent of applying them to the schemes of Remark 3.1.

One generalization of Rost’s constructions is given in the reference [EKM08, Chapter IX] which, ultimately,
gives a very satisfactory theory for schemes of finite type over a field. At some points though, technical aspects
of dimension make the constructions of [EKM08, Chapter IX] less suitable for the generalized setting we’re
interested in (cf. Remark A.11 and Remark A.26).

It turns out that these subtleties can be remedied (for the most part) with only some slight modifications.
So, we use the reference [EKM08, Chapter IX] as a guide for many statements and their proofs, pointing out
what changes should be made to where, in order to get a working theory in the setting we’re interested in.

A.1. Topological preliminaries. Let X be a sober Noetherian topological space of finite dimension (e.g.
the underlying topological space of a finite dimensional Noetherian scheme). We will use the terminology
below, following [Hei17].

Definition A.1. Let X be as above.

(1) X is said to be equidimensional if all irreducible components of X have the same dimension.
(2) X is said to be equicodimensional if all minimal irreducible closed subsets of X have the same

codimension in X.
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(3) X is catenary if for all irreducible closed subsets T ⊂ T ′, every maximal chain of irreducible closed
subsets starting with T and ending with T ′ has the same length.

(4) X is weakly biequidimensional if X is equidimensional, equicodimensional, and catenary.
(5) X is biequidimensional if all maximal chains of irreducible closed subsets of X have the same length.

A biequidimensional space is weakly biequidimensional, but not conversely [Hei17, §2-3]. However, a space
which is equidimensional, catenary, and such that all of its irreducible components are equicodimensional is
biequidimensional.

Definition A.2. Let f : X → Y be a continuous map of topological spaces. We say that f is catenarious if

codim(T, T ′) ≥ codim(f(T ), f(T ′))

for all of irreducible closed subsets T ⊂ T ′ of X.

Remark A.3. Suppose that X and Y are catenary. Then for a continuous map f : X → Y to be catenarious,
it’s necessary and sufficient that for any irreducible closed subsets T ⊂ T ′ with codim(T, T ′) = 1 we have

codim(f(T ), f(T ′)) = 0 or codim(f(T ), f(T ′)) = 1. Necessity is clear. To see that this condition is sufficient,
let T ⊂ T ′′ be any inclusion of irreducible closed subsets of X with codim(T, T ′′) = n. Then one can find a
maximal chain of irreducible closed subsets

T = T0 ⊂ T1 ⊂ · · · ⊂ Tn = T ′′.

As X and Y are catenary, we have

codim(f(T ), f(T ′′)) =

n−1∑
i=0

codim(f(Ti), f(Ti+1))

≤
n−1∑
i=0

codim(Ti, Ti+1)

= codim(T, T ′′).

Example A.4. Let X be a finite dimensional Noetherian scheme. Let Y = Spec(R) be the spectrum of a
discrete valuation ring R. Then any morphism f : X → Y is catenarious.

Roughly speaking, catenarious maps are a maps which respect the codimension relation in a strong sense.
The following lemma gives a sufficient condition to guarantee that a map is catenarious.

Lemma A.5. Let X and Y be catenary Noetherian schemes of finite dimension. Suppose that f : X → Y
is an integral morphism of schemes and that X has equicodimensional irreducible components. Then f is
catenarious.

Proof. Let T ⊂ T ′ be two irreducible closed subsets of X. To verify that f is catenarious we suppose that
codim(T, T ′) < codim(f(T ), f(T ′)) and aim to deduce a contradiction. Replacing X by T ′, we may assume
that X is irreducible. Similarly, replacing Y by f(X), we can assume that f is integral and surjective.

We can find a maximal chain of irreducible closed subsets T0 = T ⊂ · · · ⊂ Tn ⊂ X and a maximal chain
of irreducible closed subsets T−m ⊂ · · · ⊂ T−1 ⊂ T0 giving a maximal chain C of X containing T :

C : T−m ⊂ · · · ⊂ T0 = T ⊂ · · · ⊂ Tn ⊂ X.
Since f is integral, the image f(C) of this chain in Y is a chain of irreducible closed subsets containing f(T ).
If codim(T, T ′) < codim(f(T ), f(T ′)) then the chain f(C) is not maximal, and we can extend it to a maximal
chain of strictly longer length, say D (here we use that Y is catenary).

Now since f lifts specializations [Sta21, Tag 0066], we can find a chain C′ of irreducible closed subsets of
X so that f(C′) = D. Since X is catenary, this implies that X has two minimal irreducible closed subsets
with differing codimension in X, contradicting the assumption that X is equicodimensional. □

Example A.6. Suppose that X is an integral, equicodimensional, excellent Noetherian scheme of finite
dimension. Let f : Xν → X be the normalization of X in its field of fractions. Then Xν is equicodimensional
and f is finite as we now show. Thus Lemma A.5 shows that f is catenarious.

Since X is excellent, the normalization map is finite by [Sta21, Tag 035R]. Since f is surjective, we have
dim(X) = dim(Xν) by [Sta21, Tag 0ECG]. Suppose that x′ ∈ Xν is a minimal irreducible closed subset, i.e.

https://stacks.math.columbia.edu/tag/0066
https://stacks.math.columbia.edu/tag/035R
https://stacks.math.columbia.edu/tag/0ECG
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a closed point. Then x = f(x′) is a closed point of X. Since X is equicodimensional and irreducible, there
is an equality codim(x,X) = dim(X). Let D be a chain of irreducible closed subsets of X containing x with
this maximal length.

Since the going down theorem holds for the normalization of a domain, it follows that generalizations lift
along the map f . In particular, there is a maximal chain C of irreducible closed subsets of Xν containing x′

such that f(C) = D. This shows that codim(x′, Xν) ≥ dim(X) = dim(Xν) and so equality must hold. Since
x′ was arbitrary, it follows that Xν is equicodimensional as well.

In general, however, even very reasonable maps will not be catenarious. For this reason, it’s advantageous
to introduce the following weaker notion:

Definition A.7. Let f : X → Y be a continuous map of topological spaces. We say that f is weakly
catenarious if for every point y ∈ Y and for every irreducible component T ′ ⊂ f−1(y) we have

codim(T, T ′) ≥ codim(f(T ), f(T ′))

for every irreducible closed subset T ⊂ T ′ ⊂ X with codim(T, T ′) = 1.

The following lemma gives a sufficient condition to guarantee a map is weakly catenarious.

Lemma A.8. Let X be a locally Noetherian catenary scheme. Suppose that f : X → Y is a flat morphism
of schemes and assume also that, for every point y ∈ Y and for every point x ∈ Xy = f−1(y), the scheme
Spec(OXy,x

) is equidimensional. Then f is weakly catenarious.

Proof. Let y ∈ Y be a point and let T ′ be an irreducible component of f−1(y). Let T be any irreducible
closed subset of T ′ ⊂ X with codim(T, T ′) = 1. Let x ∈ X be the generic point of T and y′ = f(x).

Since f is flat, the inclusion f−1(y) ⊂ f−1({y}) is an equality. This is simply because if z ∈ f−1({y}) then
either f(z) = y or y specializes to f(z). In the latter case, there is a point z′ specializing to z and mapping

to y by [Sta21, Tag 03HV]. Hence z ∈ {z′} ⊂ f−1(y) since closed sets are stable under specialization.

Replacing Y with f(T ′) = {y} and X with f−1(y) = f−1({y}), we may assume that f is flat and dominant.
Further, we may replace X with Spec(OX,x) and Y with Spec(OY,y′).

The scheme T ′ is now an irreducible component of X. Further. the scheme T = x is a minimal irreducible
closed subset of X contained in every maximal chain of irreducible closed subsets of X. Since X is assumed
equidimensional and catenary, and because codimension codim(T, T ′) = 1, it follows that every maximal
chain of irreducible closed subsets of X must have length 1.

Now if codim(f(T ), f(T ′)) > 1, then there is a chain of irreducible closed subsets D of Y of length more
than 1. Since generalizations lift under flat maps, if this inequality held, then we would be able to lift D to
a chain of length more than 1 in X by [Sta21, Tag 03HV]. Hence codim(f(T ), f(T ′)) ≤ 1 as desired. □

Example A.9. Let X and Y be catenary Noetherian schemes of finite dimension. Suppose that f : X → Y
is flat and assume also that for every point y ∈ Y , the fiber Xy is irreducible. Then for every x ∈ Xy the
scheme Spec(OXy,x

) is equidimensional. Lemma A.8 shows that such a map f is weakly catenarious.

Example A.10. Let (R,mR) and (S,mS) be two local Noetherian rings with Krull dimension dim(Spec(S)) =
dim(Spec(R)) = 2. Suppose that Spec(R) is irreducible and suppose that Spec(S) is equidimensional. Let

f : Spec(S)→ Spec(R)

be any flat map such that f−1(mR) = mS . Then f is weakly catenarious as we now show.
Let ηR ⊂ Spec(R) be the generic point. Then f−1(ηR) contains all of the generic points of Spec(S) since

f is flat. So the closure of an irreducible component of f−1(ηR) is an irreducible component T ′ of Spec(S).

Let t ∈ Spec(S) be such that codim({t}, T ′) = 1. Since S is equidimensional, we have that dim(T ′) = 2.

Then f(t) ̸= mS , so codim({f(t)},Spec(R)) ≤ 1 as desired.

Next, if z ∈ Spec(R) is any point with codim({z},Spec(R)) = 1 then the closure T ′ of any irreducible
component of T ′ ⊂ f−1(z) satisfies codim(T ′,Spec(S)) = 1. The only irreducible closed subset of T ′ is mS ,
and the claim follows.

https://stacks.math.columbia.edu/tag/03HV
https://stacks.math.columbia.edu/tag/03HV
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A.2. K-cohomology. Let X be a separated and excellent scheme. We set

C(X) =
⊕
x∈X

⊕
n∈Z

KM
n (κ(x))

where KM
n (κ(x)) is the nth Milnor K-theory of the residue field of x. We construct an endomorphism dX

of the group C(X) as follows. It suffices to specify the map dX componentwise as

(dX)xx′ : KM
n (κ(x))→ KM

m (κ(x′))

for every pair of points x, x′ ∈ X and for all pairs of integers m,n ∈ Z. We set this map to be 0 unless
m = n− 1 and x′ is a specialization of x such that codim({x′}, {x}) = 1. Otherwise, we set

(dX)xx′ =
∑
x′
i

cκ(x′
i)/κ(x

′) ◦ ∂vi : KM
n (κ(x))→ KM

n−1(κ(x′))

to be sum of the composition of the residue maps

∂vi : KM
n (κ(x))→ KM

n−1(κ(x′i))

and norm maps

cκ(x′
i)/κ(x

′) : KM
n−1(κ(x′i))→ KM

n−1(κ(x′))

over all valuations vi determined by points x′i lying over x′ in the normalization of O{x},x′ . Note that for

any f ∈ C(X) we have dX(f) ∈ C(X) by [EKM08, Lemma 49.1].

Remark A.11. The definition that we give for the endomorphism dX is strictly different from the definition
of dX given in [EKM08, §49.A], which specifies that the (x, x′) component of dX is possibly nonzero only for

x, x′ ∈ X such that dim({x}) = dim({x′}) + 1.
For instance, let T = Spec(k[[x]][y]) and consider the maximal ideal m = (xy − 1). Then dim(T ) = 2 and

dim(m) = 0, but codim(m, T ) = 1. So m is a point considered in our definition which is not considered in
the definition of the map dX in [EKM08, §49.A].

We will frequently replace conditions on dimension that are used in [EKM08, §49.A] by either conditions
on codimension or by conditions on relative dimension (as defined in [Ful98, §20.1]). The latter two of these
three seem to have better properties than the former.

Let Y be another separated and excellent scheme. Associated to any proper morphism f : X → Y is a
functorial pushforward

f∗ : C(X)→ C(Y )

defined as in [EKM08, §49.C]. For x ∈ X and y ∈ Y the map f∗ is defined on componentwise

(f∗)xy : KM
n (κ(x))→ KM

m (κ(y))

to be trivial unless y = f(x), the extension κ(x)/κ(y) is finite, and n = m. If these conditions are met, then
one sets (f∗)xy = cκ(x)/κ(y) to be the associated norm map.

Lemma A.12. Let X and Y be separated and excellent schemes. Let f : X → Y be a proper morphism of
schemes. Then the proper pushforward commutes with the endomorphisms dX and dY , i.e. dY ◦f∗ = f∗ ◦dX .

Proof. Let x ∈ X and y′ ∈ Y be two points. Set y = f(x). If y′ /∈ {y} then we have that (dY ◦ f∗)xy′ = 0 and

(f∗ ◦ dX)xy′ = 0. This proves the claim in this case.

We can thus assume y′ ∈ {y}. There are three cases to consider: either y′ = y and codim({y′}, {y}) = 0,

or codim({y′}, {y}) = 1, or codim({y′}, {y}) > 1.

Case 1: codim({y′}, {y}) > 1. In this case, we have (dY ◦ f∗)xy′ = 0 by the definition of dY . To see that

(f∗ ◦ dX)xy′ = 0, we note that the morphism f is of finite type so the dimension formula [Sta21, Tag 02JU]

implies for any x′ ∈ X such that codim({x′}, X) = 1 and f(x′) = y′ we have tr.deg(κ(x′)/κ(y′)) > 0.

Case 2: codim({y′}, {y}) ≤ 1. The proof of the claim for this case goes along the same lines as the proof
given in [EKM08, Proposition 49.9]. □

https://stacks.math.columbia.edu/tag/02JU
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Assume now that X is Noetherian. For any flat morphism f : X → Y there is a flat pullback

f∗ : C(Y )→ C(X)

defined as in [EKM08, §49.D]. For y ∈ Y and x ∈ X, the map f∗ is defined componentwise by

(f∗)yx : KM
n (κ(y))→ KM

m (κ(x))

to be trivial unless m = n, f(x) = y, and x ∈ Xy is a generic point. If these conditions are met, then one
sets (f∗)yx = length(OXy,x) · rκ(x)/κ(y) where rκ(x)/κ(y) is the restriction map in Milnor K-theory. Note that
the assumption X is Noetherian is necessary for the definition of the pullback, since it implies that the fiber
over any point y ∈ Y has at most finitely many irreducible components.

The flat pullback is functorial for flat morphisms of Noetherian schemes (see [EKM08, Proposition 49.18]
and use that flat maps lift generalizations [Sta21, Tag 03HV]). Moreover, given a Cartesian diagram

X ′ = X ×Y Y ′ Y ′

X Y

g′

f ′

g

f

such that the following conditions hold:

(1) Y ′ is Noetherian,
(2) g is flat,
(3) f is finite,

then it follows (from the proof of [EKM08, Proposition 49.20]) that diagram

C(X) C(Y )

C(X ′) C(Y ′)

(g′)∗

f ′
∗

g∗

f∗

is commutative. One uses this observation to check the following:

Lemma A.13. Let X and Y be separated and excellent schemes. Let f : X → Y be a flat morphism of
schemes. Assume that X is Noetherian. Assume also that f is weakly catenarious. Then the flat pullback
commutes with the endomorphisms dX and dY , i.e. dX ◦ f∗ = f∗ ◦ dY .

Proof. Let y ∈ Y and x′ ∈ X be points. Set y′ = f(x′). If y′ /∈ {y} then we have (f∗ ◦ dY )yx′ = 0, by the

definition of dY , and (dX ◦ f∗)yx′ = 0 since Xy = f−1({y}) as f is flat. This proves the claim in this case.

We can thus assume y′ ∈ {y}. There are three cases to consider: either y′ = y and codim({y′}, {y}) = 0,

or codim({y′}, {y}) = 1, or codim({y′}, {y}) > 1.

Case 1: codim({y′}, {y}) > 1. In this case, we have (f∗ ◦ dY )yx′ = 0 by the definition of dY . Since f is
assumed weakly catenarious, we also have (dX ◦ f∗)xy′ = 0.

Case 2: codim({y′}, {y}) ≤ 1. The proof of the claim for this case goes along the same lines as the proof
given in [EKM08, Proposition 49.23]. □

For any such scheme X over a base field k, one can now check that the endomorphism dX is square-zero,
i.e. (dX)2 = dX ◦ dX = 0, following the proof of [EKM08, Proposition 49.30] with minor modifications.

Proposition A.14. Let X be a separated and excellent scheme over a field k. Then (dX)2 = 0.

Proof. We check that for any two points x, x′ ∈ X we have (dX ◦ dX)xx′ = 0.
Step 0: Note that it suffices to assume X = Spec(O{x},{x′}), i.e. we can assume that X is a 2-dimensional

excellent local ring over a field k.
Step 1: Up to replacing X by its normalization Xν , we can assume that X is a 2-dimensional semi-local

excellent and normal scheme over a field k. To see this, we use that f : Xν → X is finite, since X is assumed
excellent. Thus we can apply Lemma A.5 to obtain f∗ ◦ (dXν )2 = (dX)2 ◦f∗. Lastly (dX)2 ◦f∗ = (dX ◦dX)xx′

since X is assumed irreducible and local and X and Xν have the same fraction field. After possibly repeating
Step 0, we can assume again that X is the spectrum of a local ring (S,mS) with S normal.

https://stacks.math.columbia.edu/tag/03HV
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Step 2: Since S is a normal, local, Noetherian ring with dim(Spec(S)) = 2, it follows S is Cohen-Macaulay,

see [Sta21, Tag 0B3D]. Let Ŝ be the completion of S at mS . Then the completion Ŝ is also a Cohen-Macaulay,

Noetherian, local ring by [Sta21, Tag 07NX]. Hence Spec(Ŝ) is equidimensional with dim(Spec(Ŝ)) = 2.

The map induced on spectra from the morphism S → Ŝ is flat and, by Example A.10, weakly catenarious.

By Lemma A.13, it thus suffices to check the claim for X = Spec(Ŝ).

Step 3: As in [EKM08, Proposition 49.30, Step 2], one can reduce from the case of X = Spec(Ŝ) to the
case where X = Spec(F [[x, y]]) for a field F/k using Lemma A.12.

Step 4: The proof for the scheme X = Spec(F [[x, y]]) is given in [EKM08, Proposition 49.30, Step 1]. □

Amazingly, we note that all of the above follows without keeping track of any additional gradings on the
group C(X) which the endomorphism dX may or may not respect.

Now write X(p) for the set of points x ∈ X of codimension p. For any pair of integers p, q ∈ Z we write

Cpq (X) :=
⊕

x∈X(p)

Kq−p(κ(x))

for the given direct sum. Since X is locally Noetherian, there is a decomposition C(X) =
⊕

(p,q)∈Z2 Cpq (X)

giving C(X) the structure of a bigraded group.
If X is irreducible, or if X has finite dimension and is biequidimensional, then dX has bidegree (1, 0) on

C(X) with this grading. Indeed, because X is excellent, the underlying topological space of X is catenary.

Thus if x, x′ ∈ X are such that {x′} ⊂ {x} and codim({x′}, {x}) = 1, then

codim({x′}, X) = codim({x}, X) + codim({x′}, {x}) = codim({x}, X) + 1

by [Sta21, Tag 02I6] in the case X is irreducible and by [Hei17, Proposition 5.3] in the case X has finite
dimension and is biequidimensional.

Definition A.15. Let k be a field. Let X/k be a separated and excellent scheme. Assume that X is
either irreducible or finite dimensional and biequidimensional. For any p, q ∈ Z, we define the degree-(p, q)
K-cohomology group Ap(X;KM

q ) to be the homology of the complex C∗
q (X) induced by dX in degree p, i.e.

Ap(X;KM
q ) := H

 ⊕
x∈X(p−1)

KM
q−p+1(κ(x))→

⊕
x∈X(p)

KM
q−p(κ(x))→

⊕
x∈X(p+1)

KM
q−p−1(κ(x))

 .

This definition seems to be the most suitable for our purposes as the next corollary shows.

Corollary A.16. Let k be an infinite field and let X be a separated, excellent, and regular scheme over k.
Assume that X is either irreducible or finite dimensional and biequidimensional.

Then there is an isomorphism

Hp(X,KMq ) ∼= Ap(X;KM
q )

where KMq is the qth Milnor K-theory sheaf on X.

Proof. The differential dX is the same as that coming from the Gersten resolution. The claim is immediate
from the exactness of this resolution [Ker09, Theorem 7.1]. □

A.3. Functorality of K-cohomology. We collect here some of the possible functorial transformations that
are available for the K-cohomology groups. We do not use this material in the proofs of our main results,
but it may be worthwhile to make note of it.

Let X and Y be separated, locally Noetherian, and excellent schemes. We say that a morphism f : X → Y
has relative codimension d if for any p, and for any point x ∈ X(p), the image f(x) = y lies in Y (p+d).

Example A.17. Any open immersion to X has relative codimension 0. So does the canonical morphism
from the spectrum of the local ring of a point x ∈ X to X.

Example A.18. Suppose that X is irreducible and that either of the following are true:

(1) Y is irreducible;
(2) Y is finite dimensional and biequidimensional.

https://stacks.math.columbia.edu/tag/0B3D
https://stacks.math.columbia.edu/tag/07NX
https://stacks.math.columbia.edu/tag/02I6
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Then, if f : X → Y is a closed immersion, it follows that f must have relative codimension d = codim(X,Y ).

To see this, first assume Y is irreducible. If x ∈ X(p) and Z = {x} then we have

codim(Z,X) + codim(X,Y ) = codim(Z, Y )

by [Sta21, Tag 02I6] since Y is assumed catenary (which follows from being excellent).
Now assume that Y is finite dimensional and biequidimensional. Then the same equality on codimension

as above follows from [Hei17, Proposition 2.3].

Example A.19. Suppose that Y is an integral scheme and f : Y ν → Y is the normalization morphism
of Y . Then f has relative codimension 0. To see this, let x ∈ (Y ν)(p) and set y = f(x). Assume that

y ∈ Y (p′). Then there exists a chain C of irreducible closed subsets of Y of length p′ and the going down
theorem guarantees a chain D of irreducible closed subsets of Y ν of length p′, starting with x, which maps
to C under f ; so p ≥ p′. Conversely, if D is a chain of closed subsets of Y ν of length p containing x, then
C = f(D) is a chain of closed subsets of Y of length p containing y by [Sta21, Tag 00GT]. So p ≤ p′.

Example A.20. Suppose that X and Y have finite dimension and are biequidimensional. Then every finite,
flat, and surjective morphism f : X → Y is of relative codimension 0. Indeed, let y ∈ Y be a point and set
Z = {y}. Then

codim(Z, Y ) = codim(f−1(Z), X)

by [Gro65, Corollaire 6.1.4]. Now let W ⊂ f−1(Z) be an irreducible component. Then W dominates Z since
generalizations lift along the flat morphism f (see [Sta21, Tag 03HV]). Since f is finite (so closed), this implies
W surjects onto Z. Hence by [Sta21, Tag 0ECG], we have dim(W ) = dim(Z) and also dim(X) = dim(Y ).
Now codim(W,X) = codim(Z, Y ) follows from [Hei17, Proposition 2.3].

If f : X → Y is a proper morphism of relative codimension d (which necessarily implies that f is finite),
then the proper pushforward induces a pushforward map

f∗ : Cpq (X)→ Cp+dq+d (Y )

for any p, q ∈ Z. In other words, the proper pushforward of a morphism of relative codimension d is a
morphism of bidegree (d, d) between the bigraded groups C(X) and C(Y ). If X and Y are two schemes over
a field k, and if both X and Y are either irreducible or of finite dimension and biequidimensional, then by
Lemma A.12 this induces a pushforward map

f∗ : Ap(X;KM
q )→ Ap+d(Y ;KM

q+d)

which is functorial for compositions of proper morphisms of fixed relative codimension.
Now assume that X is, moreover, a Noetherian scheme. We say a morphism f : X → Y has continuous

codimension if for any point y ∈ Y (p), every generic point x of the fiber f−1(y) satisfies x ∈ X(p). We allow
for the possibility that the fiber f−1(y) is empty.

Example A.21. Let Spec(R) be the spectrum of a 2-dimensional regular local ring R with maximal ideal

m and let Spec(R̂) be the spectrum of the completion of R at m. Then the canonical map

Λ : Spec(R̂)→ Spec(R)

is flat and of continuous codimension.
To see this, one can work in cases, checking points of the fiber over a point p ⊂ R with ht(p) = 0, 1, 2.

For ht(p) = 2 (so m = p), if there is prime q ⊂ R̂ with q ∩R = p then q can’t be (0), so it has height either

one or two. By the going down theorem, the height also can’t be one. Hence q is the maximal ideal of R̂.
For ht(p) = 1, the only possibility for the fiber are primes of height one as well. Lastly, the generic fiber of
Λ always contains the generic point of the domain, hence the claim.

Example A.22. Any morphism of relative codimension 0 has continuous codimension. The converse is not
true, however, as the projection morphism from a variety of positive dimension gives a counterexample.

For a more interesting example of a morphism which has continuous codimension but is not of relative

codimension 0, take R = k[x, y](x,y) and let R̂ be the completion of R at m = (x, y). Then the morphism of

schemes associated to the inclusion R ⊂ R̂ fails to have relative codimension 0 by [Mat88, Theorem 2] but,
this morphism does have continuous codimension by the previous example.

https://stacks.math.columbia.edu/tag/02I6
https://stacks.math.columbia.edu/tag/00GT
https://stacks.math.columbia.edu/tag/03HV
https://stacks.math.columbia.edu/tag/0ECG
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The flat pullback along a flat morphism f : X → Y of continuous codimension induces a pullback

f∗ : Cpq (Y )→ Cpq (X)

for any p, q ∈ Z. Thus the flat pullback along a morphism f∗ induces a bigraded morphism of degree (0, 0)
between the bigraded groups C(Y ) and C(X). If X and Y are two schemes over a field k, and if both X
and Y are also either irreducible or of finite dimension and biequidimensional, then such maps are weakly
catenarious and, by Lemma A.13, there is an induced pullback morphism

f∗ : Ap(Y ;KM
q )→ Ap(X;KM

q )

which is functorial for compositions of flat morphisms of continuous codimension between Noetherian schemes.
A priori, it isn’t clear that morphisms of fixed relative codimension or of continuous codimension are

stable under base change. The following gives a special case of this.

Lemma A.23. Suppose that f : X → Y is a flat morphism with continuous codimension. Let π : Y ′ → Y
be a morphism of relative codimension d and assume that the projection π′ : X ′ = X ×Y Y ′ → X also has
relative codimension d. Then the base change f ′ : X ′ → Y ′ is a flat morphism of continuous codimension.

Moreover, if π is finite and if X and X ′ are Noetherian, then the diagram

(18)

Cpq (Y ′) Cpq (X ′)

Cp+dq+d (Y ) Cp+dq+d (X)

(f ′)∗

π∗ π′
∗

f∗

is commutative.

Proof. Let y ∈ (Y ′)(p) be a point. Because generalizations lift along flat maps [Sta21, Tag 03HV], for any

w ∈ (f ′)−1(y) we have codim({w}, X ′) ≥ p.
Let z = π(y) ∈ Y (p+d) and let u ∈ f−1(z) be any generic point so that u ∈ X(p+d). Then there is a

point u′ ∈ (f ′)−1(y) which maps to u by base change. Since π′ has relative codimension d, we must have

u′ ∈ (X ′)(p). Now u′ is a specialization of any generic point w, so codim({w}, X ′) ≤ p as well.
That the diagram (18) is commutative follows from the fact that it is induced from the corresponding

commutative diagram between the ungraded groups C(Y ′), C(X ′), C(Y ), C(X). □

Under the assumptions of Lemma A.23, we thus find the commuting square

(19)

Ap(Y ′;KM
q ) Ap(X ′;KM

q )

Ap+d(Y ;KM
q+d) Ap+d(X;KM

q+d)

(f ′)∗

π∗ π′
∗

f∗

granted that all of these groups are defined.

A.4. Relative K-homology. Now we set-up a relative theory similar to [Ful98, §20.1]. We fix throughout
the following a separated, Noetherian, excellent scheme S of finite dimension defined over a fixed field k.

Let X be a scheme that’s separated and of finite type over S. We write (X/S)(p) for the set of points of X
whose closure has relative dimension p over S. Following [Ful98, §20.1], we say that an integral subscheme
V ⊂ X has relative dimension dimS(V ) ∈ Z where

dimS(V ) = tr.deg(R(V )/R(T ))− codim(T, S);

here T is the closure of the image of V in S and R(V ), R(T ) are the corresponding function fields.
We write

Cp,q(X/S) :=
⊕

x∈(X/S)(p)

KM
p+q(κ(x)).

The decomposition C(X) =
⊕

p,q∈Z Cp,q(X/S) gives C(X) the structure of a bigraded group. According to

[Ful98, Lemma 20.1 (2)], the endomorphism dX has degree (−1, 0) on C(X) with this grading.

https://stacks.math.columbia.edu/tag/03HV
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Definition A.24. We define the degree-(p, q) relative K-homology group Ap(X/S;KM
q ) as the homology of

the complex C∗,q(X/S) induced by the differential dX in degree p, i.e.

Ap(X/S;KM
q ) := H

 ⊕
x∈(X/S)(p+1)

KM
p+q+1(κ(x))→

⊕
x∈(X/S)(p)

KM
p+q(κ(x))→

⊕
x∈(X/S)(p−1)

KM
p+q−1(κ(x))

 .

Note that we don’t assume X is irreducible or finite dimensional and biequidimensional in this definition.

Remark A.25. Note that the set (X/S)(p) is not necessarily empty if p < 0 and so Ap(X/S;KM
q ) does not

necessarily vanish for p < 0. For example, if X is a positive dimensional projective variety over a field k,
then Ap(X/X;KM

−p)
∼= CHdim(X)+p(X) which is never zero for 0 ≥ p ≥ −dim(X).

As another example, if we consider T from Remark A.11 as a scheme over the spectrum of k[[x]], then
the maximal ideal m′ = (x, y) defines a closed subscheme of T with relative dimension dimk[[x]](m

′) = −1.
For comparison, we also have dimk[[x]](T ) = 1 and dimk[[x]](m) = 0.

If f : X → Y is a proper S-morphism between two schemes X and Y which are both of finite type over
S, then the proper pushforward f∗ : C(X) → C(Y ) respects the grading by relative dimension by [Ful98,
Lemma 20.1 (3)]. In particular, there are induced pushforward morphisms

f∗ : Cp,q(X)→ Cp,q(Y ).

By Lemma A.12, these pushforwards induce functorial pushforward morphisms

f∗ : Ap(X/S;KM
q )→ Ap(Y/S;KM

q )

for any p, q ∈ Z.
If f : X → Y is, instead, a flat S-morphism of relative dimension d between finite type schemes over S,

then the flat pullback f∗ : C(Y )→ C(X) induces a morphism

f∗ : Cp,q(Y )→ Cp+d,q−d(X).

Here a flat morphism f : X → Y is said to have relative dimension d if for every y ∈ Y the fiber Xy is either
empty or equidimensional with dim(Xy) = d. To see that f∗ has target as claimed, it suffices to assume that
X and Y are both integral. The claim then follows from [Ful98, Lemma 20.1 (3)]. Any such morphism f is
weakly catenarious, thus there are functorial flat pullback morphisms

f∗ : Ap(Y/S;KM
q )→ Ap+d(X/S;KM

q−d)

for morphisms of fixed relative dimension by Lemma A.13.

Remark A.26. Consider the scheme T from Remark A.11. Then T can be canonically realized as an
open subscheme of P1

k[[x]] as the complement of infinity. The point m ∈ T dominates a closed subscheme

W ⊂ P1
k[[x]] with dim(W ) = 1. So, if one uses the definition of a flat morphism of constant relative dimension

as given in [EKM08, §49.D], then the open immersion of T into P1
k[[x]] is not of constant relative dimension.

In contrast, with the definition we’ve given above, every open immersion of finite type schemes over S is
of constant relative dimension 0 (and, in the above example, dimk[[x]](W ) = 0).

Remark A.27. Note that if X is irreducible and of finite type over S with relative dimension dimS(X) = n,
then there are equalities

Cpq (X) = Cn−p,q−n(X/S) and Ap(X;KM
q ) = An−p(X/S;KM

q−n)

for any p, q ∈ Z by [Ful98, Lemma 20.1 (2)].

Given an open subscheme U ⊂ X of finite type over S with closed complement Z ⊂ X, there is an
associated long exact localization sequence in relative K-homology. The projective bundle formula holds in
relative K-homology. Gysin morphisms are also defined for local complete intersection morphisms between
schemes of finite type over S which factor as the composition of a regular closed embedding and a smooth
morphism. We couldn’t find a reference for the blow-up formula in K-(co)homology, but we want to use it,
so we include it below in this relative setting.
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Proposition A.28. Let S be a separated, Noetherian, excellent scheme of finite dimension over a field k.
Let X/S be a scheme smooth over S. Let Z be either an irreducible or biequidimensional scheme over S and
let i : Z → X be a regular closed embedding of codimension d over S. Then there are isomorphisms

Ap(BlZ(X)/S;KM
q ) ∼= Ap(X/S;KM

q )⊕

(
d−1⊕
i=1

Ap−i(Z/S;KM
q+i)

)
for every p, q ∈ Z.

Proof. Let π : BlZ(X)→ X be the blow-down map over S. Note π is a projective local complete intersection
morphism. In particular π factors into the composition of maps (for some not necessarily unique r > 0)

π : BlZ(X)
i−→ PrS ×S X

p−→ X.

In this setting, there is a pullback π∗ : Ap(X/S;KM
q ) → Ap(BlZ(X)/S;KM

q ) defined as π∗ = i! ◦ p∗ where

i! is the associated Gysin map and p∗ is the flat pullback. Let ψ : E → Z be the projective bundle of the
normal bundle associated to the immersion Z → X and write j : E → BlZ(X) for the induced immersion.
By base change, the map ψ factors

ψ : E
j−→ PrS ×S Z

q−→ Z

and ψ∗ = j! ◦ q∗ is defined as well. Lastly, we let U = X \ Z and U ′ = BlZ(X) \ E.
We then have the following commutative ladder of long exact localization sequences.

· · · Ap(E/S;KM
q ) Ap(BlZ(X)/S;KM

q ) Ap(U
′/S;KM

q ) Ap−1(E/S;KM
q ) · · ·

· · · Ap(Z/S;KM
q ) Ap(X/S;KM

q ) Ap(U/S;KM
q ) Ap−1(Z/S;KM

q ) · · ·

e(F )◦ψ∗
π∗ ψ∗

Here e(F ) is the Euler class of the excess intersection bundle F associated to the square with horizontal
maps j and i, cf. [EKM08, Proposition 55.3]. The bundle F can, moreover, be identified with the universal
quotient sheaf of the projective bundle ψ by the arguments of [Sta21, Tag 0FV9] and [Sta21, Tag 0FVA].

One checks that the following standard sequence associated to the above diagram is exact.

· · · → Ap(Z/S;KM
q )

(e(F )◦ψ∗,−i∗)−−−−−−−−−→ Ap(E/S;KM
q )⊕Ap(X/S;KM

q )
j∗+π

∗

−−−−→ Ap(BlZ(X)/S;KM
q )→ Ap−1(Z/S;KM

q )→ · · ·
The composition ψ∗ ◦ e(F ) ◦ ψ∗ is the identity and so this sequence breaks into short exact sequences

0→ Ap(Z/S;KM
q )→ Ap(E/S;KM

q )⊕Ap(X/S;KM
q )→ Ap(BlZ(X)/S);KM

q )→ 0.

The claim follows now from the projective bundle formula applied to ψ : E → Z. □
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Inst. Hautes Études Sci. Publ. Math. (1965), no. 24, 231. MR 199181
[Hei17] Katharina Heinrich, Some remarks on biequidimensionality of topological spaces and Noetherian schemes, J. Commut.

Algebra 9 (2017), no. 1, 49–63. MR 3631826
[Ker09] Moritz Kerz, The Gersten conjecture for Milnor K-theory, Invent. Math. 175 (2009), no. 1, 1–33. MR 2461425

https://stacks.math.columbia.edu/tag/0FV9
https://stacks.math.columbia.edu/tag/0FVA


ON DEFORMATIONS AND K-COHOMOLOGY 17
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