
ON THE ALGEBRAIZABILITY OF FORMAL
DEFORMATIONS IN K-COHOMOLOGY

EOIN MACKALL

Abstract. We study the higher direct image functors Riπ∗F ,
associated to any S-scheme π : X → S and any abelian sheaf F
on the big Zariski site of X, as sheaves on the big Zariski site of S.
We note that these functors and their sheafifications, on the big
étale and fppf sites over S, reflect the property of being locally of
finite presentation when π : X → S is quasi-compact and quasi-
separated. Our primary example, and interest in the remainder of
this article, are the functors Riπ∗Kn,X associated to either Milnor
or Quillen/Thomason K-theory sheaves.

We show that the functors Riπ∗Kn,X associated to the Milnor
K-theory sheaves for n = 2, 3, and their étale sheafifications, have
universal formal deformations when S is a scheme of finite type over
an algebraic field extension k/Q and when π : X → S has smooth,
proper, and geometrically connected fibers with some vanishing
Hodge numbers. When S = k is itself such a field, and if i = n = 2,
then we show that the algebraizability of these universal formal
deformations is a stable birational invariant of the scheme X.
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1. Introduction

The problem of viewing the Chow groups of cycles on a given variety
as representable by a group scheme is very old, very subtle, and very
interesting. The first interesting case that was studied in great detail
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was the representability of the Chow group of codimension 1-cycles or,
what amounts to the same, the study of the Picard scheme of a variety.
Older approaches to representability, including Grothendieck’s original
construction of the Picard scheme, realized the Picard scheme as a
quotient of an open subscheme of a component of the Hilbert scheme,
see [Kle05] for a very detailed survey of the relevant facts.

Attempts to generalize these constructions to Chow groups of cycles
of higher codimension were largely stopped with the results of [Mum68]
where it was shown that the Chow group of codimension 2-cycles on
an arbitrary surface could not, in general, be described as the group of
rational points of an abelian variety in any natural way. Still, there were
deformation theoretic results, such as those obtained by Bloch [Blo75],
which showed that representability may still be achievable under some
assumptions on the given variety (in this case, the assumptions were
primarily the vanishing of certain Hodge numbers).

After the introduction of Bloch’s results on the deformation theory
of Chow groups of codimension 2-cycles, there was renewed interest in
analyzing the representability of Chow groups of higher codimension
cycles through the use of higher K-cohomology groups. Some of these
attempts involved trying to create natural transformations from or to
certain Hilbert schemes, see for example the work [Gra79] of Grayson.
This avenue of research, however, seems to have mostly stalled due to
the difficulty in constructing such natural transformations in general
(although, there has been some recent development and interest in
formal results in this direction, see [Yan18] or [DHY18]).

Recently, Benoist and Wittenberg [BW19] have constructed a functor
using the K-theory of schemes (and, particularly, the graded object
associated to the gamma filtration) in order to prove representability
of the Chow group of codimension 2-cycles on a geometrically rational
smooth and proper threefold. Their method is interesting but, it would
be desirable to have a more flexible theory relying on a functor that can
be defined for a wider class of varieties (see their comments in [BW19,
Remarks 3.2] on the interest and difficulty in finding such a functor).

Surprisingly, at least to the author of the present article, there seems
to have been no attempt in the literature to analyze the representability
of higher K-cohomology groups with the use of Artin’s representability
criterion from [Art69]. The purpose of this article is to do exactly this,
in an attempt to find a more natural setting in which to study the
representability of Chow groups of higher codimension.

In this regard, we’ve had some success advancing the formal theory:
in Section 2 and Section 4 we give a detailed construction of higher
direct image functors Riπ∗Kn,X , and their sheafifications in the étale
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topology, associated to a relative S-scheme π : X → S and to various
different K-theory sheaves on the big site of X; in Section 3 we then
show that the functors Riπ∗Kn,X are locally of finite presentation and
this allows us, when combined with some observations on effective pro-
representability in Section 5, to give new examples where the functors
R2π∗K2,X and their étale sheafifications have algebraizable universal
formal deformations (see Example 5.17).

One implication of our work, the idea behind which already appears
in the work of Benoist and Wittenberg, is that the representability of
codimension 2-cycles on a variety X should be determined by the stable
birational equivalence class of X. As evidence for this claim, we show in
Theorem 5.15 and Corollary 5.16 that for any variety π : X → k defined
over an algebraic field extension k/Q, the pro-representability, effective
pro-representability, and algebraizability of the functor R2π∗K2,X is a
stable birational invariant of X.

We try to work in a sufficient generality throughout the present text.
For example, we work whenever possible over an arbitrary base scheme
S and, although most of our contributions appearing in Section 5 use
only Milnor K-theory sheaves, we also make it a point to include both
Quillen K-theory and Thomason K-theory sheaves in our discussion in
Section 4. We find it especially important to include the latter since it
seems likely that natural transformations between higher direct image
functors associated to K-theory sheaves will more easily be constructed
using Quillen or Thomason K-theory than Milnor K-theory.

Acknowledgments. I’d like to thank Niranjan Ramachandran for
both bringing my attention to the problem of representability of higher
K-cohomology groups and for the many conversations that we’ve had
about this work during its genesis.

2. Higher direct images

Let S be a fixed base and let π : X → S be an arbitrary S-scheme.
In this section we recall the explicit description of the higher direct
image functors Riπ∗F on the big Zariski site Sch/S associated to any
abelian sheaf F on the big Zariski site Sch/X. By construction, these
functors are the Zariski sheaves associated to the functor of S-schemes

T/S ⇝ Hi(X ×S T,FXT
)

which have appeared frequently in the literature when the sheaf F is
representable by a smooth group scheme, see e.g. [Oor62, AM77, BO21].

Note that, by [Sta21, Tag 0213], any abelian sheaf F on the big
Zariski site Sch/S of a scheme S is determined by the following data

https://stacks.math.columbia.edu/tag/0213
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(SC1) for every scheme T/S, there is a specified abelian sheaf FT on
the underlying topological space of T ,

(SC2) for every morphism of S-schemes f : T ′ → T , there is a chosen
morphism cf : f−1FT → FT ′ ,

which is, additionally, subject to the relations

(SR1) given two morphisms of S-schemes f : T ′ → T and g : T ′′ → T ,
there is an equality cg ◦ g−1cf = cf◦g,

(SR2) if f : T ′ → T is an open immersion, then cf is an isomorphism.

So, assume that F is an abelian sheaf on the big Zariski site Sch/X.
To define higher direct image functors Riπ∗F on the big Zariski site
Sch/S of S, we start by specifying the conditions (SC1) and (SC2).
We check after that (SR1) and (SR2) hold as needed.

2.1. Objects. Let T/S be an arbitrary S-scheme and let πT : XT → T
be the map associated to T by base change. For any such T/S, we set

(1)
(
Riπ∗F

)
T

:= RiπT∗FXT
,

where RiπT∗FXT
is the sheaf on T associated to the presheaf assigning

to an open U ⊂ T the cohomology group Hi(π−1
T (U),FXT

|π−1
T (U)).

2.2. Morphisms. Let ρ : T ′ → T be any morphism of two S-schemes.
To give an associated restriction map

(2) cρ : ρ−1RiπT∗FXT
→ RiπT ′∗FXT ′

is equivalent, by adjunction, to giving a map

(3) caρ : RiπT∗FXT
→ ρ∗R

iπT ′∗FXT ′ .

We define caρ via base change from the following commutative diagram.

(4)

XT ′ XT

T ′ T

ρX

πT ′ πT

ρ

Specifically, note that there is a canonical morphism

(5) FXT
→ ρX∗FXT ′

which, composing with higher direct images, yields a morphism

RiπT∗FXT

ϕ0−→ RiπT∗ρX∗FXT ′ .
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To get (3) we compose ϕ0 with the composition

RiπT∗ρX∗FXT ′ Ri (πT ◦ ρX)∗FXT ′

Ri(ρ ◦ πT ′)∗FXT ′ ρ∗R
iπT ′∗FXT ′

ϕ1

ϕ2

where the first and last arrows are edge maps in the relative Leray
spectral sequences for the two possible compositions XT ′ → T in (4).

More precisely, the morphisms ϕi above, for i = 0, 1, 2, can be defined
as follows. We consider presheaves F0,F1,F2 on T assigning to an open
U ⊂ T the cohomology groups

• F0(U) = Hi(π−1
T (U),FXT

|π−1
T (U))

• F1(U) = Hi(π−1
T (U), (ρX∗FXT ′ )|π−1

T (U))

• F2(U) = Hi((πT ◦ ρX)−1(U),FXT ′ |(πT ◦ρX)−1(U))

and a presheaf F3 on T ′ assigning to an open U ′ ⊂ T ′ the cohomology

• F3(U
′) = Hi(π−1

T ′ (U ′),FXT ′ |π−1
T ′ (U

′)).

Writing (−)# for the sheafification of a presheaf, we have

F#
0 = RiπT∗FXT

, F#
1 = RiπT∗(ρX∗FXT ′ ), F#

2 = Ri(πT ◦ ρX)∗FXT ′

and F#
3 = RiπT ′∗FXT ′ . We will use the following commutative diagram

and the notation introduced in it.

XU ′ XU

XT ′ XT

U ′ U

T ′ T

j′X

(ρ|U )X

jXρX

j′

ρ|U

j
ρ

The canonical morphism of (5) is compatible with the above maps
in the sense that there is a commuting diagram

j−1
X FXT

j−1
X ρX∗FXT ′

FXU
(ρ|U)X∗FXU′
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with the right vertical arrow an isomorphism when U ′ = U ×T T ′. To
get the map ϕ0, we consider an injective resolution I• of (ρ|U)X∗FXU′

and an injective resolution J• of FXU
on XU . Then there is a morphism

of complexes filling in the dotted arrow below, unique up to homotopy,

FXU
J•

(ρ|U)X∗FXU′ I•

which induces a unique morphism of cohomology

Hi(π−1
T (U),FXT

|XU
)→ Hi(π−1

T (U), (ρX∗FX′
T
)|π−1

T (U))

compatible with the restrictions of F0 and F1. The map ϕ0 is then the
associated map on sheafifications ϕ0 : F#

0 → F
#
1 .

To construct ϕ1, we only need to construct morphisms on cohomology

(6) Hi(π−1
T (U), (ρX∗FXT ′ )|π−1

T (U))→ Hi(π−1
T ′ (U ′),FXT ′ |π−1

T ′ (U
′))

which are compatible with the restrictions of F1 and F2. Let I• be an
injective resolution for FXU′ on XU ′ and let J• be an injective resolution
for (ρ|U)X∗FXU′ on XU . Then there is a morphism of complexes filling
in the dotted arrow below, unique up to homotopy,

(ρ|U)−1
X (ρ|U)X∗FXU′ (ρ|U)−1

X J•

FXU′ I•

which gives a morphism J• → (ρ|U)X∗I• by adjunction. Now the map
induced on cohomology of this morphism of complexes yields a map of
presheaves F1 → F2 which sheafifies to ϕ1.

Lastly, we construct ϕ2. For this we construct a map F2 → ρ∗F3.
We get ϕ2 through the universal property of sheafification and the
canonical composition F2 → ρ∗F3 → ρ∗(F#

3 ). Noting that there’s an
equality π−1

T ′ (ρ−1(U)) = (πT ◦ρX)−1(U) for every open U ⊂ T , the map
F2(U)→ ρ∗F3(U) = F3(ρ

−1(U)) is just the identity.

2.3. Relations. The system {RiπT∗FXT
, cρ}T,ρ given by (1) and (2)

will act as the data of (SC1) and (SC2) for an abelian sheaf on the
big Zariski site of S. To confirm that this data does define such a sheaf,
we check the relations (SR1) and (SR2).

Proposition 2.1. Keep notation as above. Then the following is true
for the morphisms defined as in (2):
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(1) if f : T ′ → T and g : T ′′ → T are two morphisms of S-schemes,
then there is an equality cg ◦ g−1cf = cf◦g;

(2) if f : T ′ → T is an open immersion of S-schemes, then cf is
an isomorphism of sheaves on T ′.

Proof. We first prove part (1). We use the Cartesian diagram below.

(7)

XT ′′ XT ′ XT

T ′′ T ′ T

gX

πT ′′

fX

πT ′ πT

g f

To see that the equality cg ◦ g−1cf = cf◦g holds in general, it suffices to
check that it holds on stalks; this will allow us to reduce the question
of equality of these maps to a statement about functorality on the level
of cohomology groups and, therefore, to the similar statement which
holds for the sheaf F by assumption.

So let t ∈ U ⊂ T be a point contained in an open subset U of T .
We set U ′ = f−1(U) and U ′′ = (f ◦ g)−1(U). The diagram (7) restricts
over these open subsets to the Cartesian diagram below.

(8)

π−1
T ′′(U ′′) π−1

T ′ (U ′) π−1
T (U)

U ′′ U ′ U

gX

πT ′′

fX

πT ′ πT

g f

Choose injective resolutions I ′′• of FXT ′′ |π−1
T ′′ (U

′′), and I ′• of FXT ′ |π−1
T ′ (U

′),

and I• of FXT
|π−1

T (U). There are then maps of complexes coming from

the adjunction of the conditions (SC2) for F :

(9)

FXT
|π−1

T (U) I•

fX∗FX′
T
|π−1

T ′ (U
′) fX∗I ′•

fX∗gX∗FXT ′′ |π−1
T ′′ (U

′′) fX∗gX∗I ′′• .

Applying the global sections functor yields the canonical map

Hi(π−1
T (U),FXT

|π−1
T (U))→ Hi(π−1

T ′′(U
′′),FXT ′′ |π−1

T ′′ (U
′′))

which determines the morphism of sheaves cg ◦ g−1cf at the stalk level.
The morphism cf◦g similarly comes from a map on cohomology and,
because of (SR2) for F , the two are equal.
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To prove part (2) it suffices to evaluate cf on stalks and note that, if
f : T ′ → T is an open immersion and fX : XT ′ → XT the map gotten
by base change, then f−1

X FXT
∼= FXT ′ since F is a sheaf on the big

Zariski site of X. We leave the details to the reader. □

2.4. Higher direct images. We can now give the definition for the
higher direct image functors Riπ∗F , of an abelian sheaf F on the big
Zariski site Sch/X associated to an S-scheme π : X → S, as an abelian
sheaf on the big Zariski site Sch/S.

Definition 2.2. Let F be an abelian sheaf on the big Zariski site
Sch/X. For any i ≥ 0, we write Riπ∗F for the sheaf on the big Zariski
site Sch/S associated, by [Sta21, Tag 0213], to the following data:

(HD1) for any scheme T/S, we take (Riπ∗F)T := RiπT∗FXT
as in (1),

(HD2) and, for any morphism ρ : T ′ → T of S-schemes T and T ′,
we take cρ : ρ−1RiπT∗FXT

→ RiπT ′∗FXT ′ to be the morphism
defined as in (2).

That this data determines a well-defined abelian sheaf on the big Zariski
site Sch/S follows from Proposition 2.1.

Remark 2.3. It’s immediate to determine the explicit description of
the functor Riπ∗F : Sch/S → Ab on objects and morphisms of Sch/S
from the above data. For any scheme T/S, one has

Riπ∗F(T ) = H0(T,RiπT∗FXT
)

and for any morphism ρ : T ′ → T , the map Riπ∗F(T )→ Riπ∗F(T ′) is
the canonical map

H0(T,RiπT∗FXT
)→ H0(T ′, RiπT ′∗FXT ′ )

gotten from the sheaf map caρ of (3).

Remark 2.4. Note that if i = 0, then Riπ∗F = π∗F .

Remark 2.5. In the following sections, we’ll be interested in a special
case of the above situation where one can say quite a bit more about
the associated restriction maps for these higher direct image functors.
In this remark, we suppose that π : X → k is a scheme over a fixed
base field k, and we let F be an abelian sheaf on the big Zariski site
Sch/X of X as before.

Let T = Spec(S) be the spectrum of a local k-algebra (S,mS) and let
ρ : T ′ → T be an arbitrary morphism from a k-scheme T ′. Then, since
T is a local scheme, there is an isomorphism between the global sections
functor, from the category of abelian sheaves on T to the category of
abelian groups, and the functor taking the stalk of an abelian sheaf at

https://stacks.math.columbia.edu/tag/0213
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the unique closed point corresponding to the maximal ideal mS ⊂ S.
Hence the associated map

Riπ∗F(T ) = H0(T,RiπT∗FXT
)→ H0(T ′, RiπT ′∗FXT ′ ) = Riπ∗F(T ′)

is isomorphic with the composition of the homomorphism,

(10) Hi(XT ,FXT
)→ Hi(XT , ρX∗FXT ′ ),

induced by the morphism of sheaves in (5) above, followed by the first
edge homomorphism

(11) Hi(XT , ρX∗FXT ′ )→ Hi(XT ′ ,FXT ′ ),

and, lastly, followed by the second edge homomorphism

(12) Hi(XT ′ ,FXT ′ )→ H0(T ′, RiπT ′∗FXT ′ ).

If T ′ = Spec(R) is similarly the spectrum of a local k-algebra (R,mR),
then the homomorphism (12) above is an isomorphism as well. In some
cases, i.e. with some assumptions on S and R, it’s also possible to show
that the first edge homomorphism (11) in the above is an isomorphism.

Lemma 2.6. Keep notation as above and assume that ρ : T ′ → T is
the closed immersion associated to a surjective homomorphism S → R.
Then the edge homomorphism

Hi(XT , ρX∗FXT ′ )→ Hi(XT ′ ,FXT ′ )

from (11) is an isomorphism.

Proof. Under the assumptions of the lemma, the functor ρX∗ is known
to be exact. The claim now follows from the explicit description of the
edge homomorphism, see the paragraph following (6). □

The following lemma is not used in the rest of this text. However,
we include it here as it seems that it could be useful in the future.

Lemma 2.7. Suppose now that (R,mR) is an artinian local k-algebra
with residue field R/mR

∼= k and assume that (S,mS) is a local k-algebra
with with S/mS

∼= k as well.
Let ρ : T ′ → T be a closed immersion associated to a surjective map

S → R and write ϕ : T → k for the structure map associated to the k-
algebra map k → S. We use the notation of the following commutative
diagram gotten from base change to X:

XT ′ XT X

T ′ T k.

πT ′

ρX

πT

ϕX

π

ρ ϕ
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Then, for any abelian sheaf F on XT ′, the canonical homomorphism

(13) Hi(XT ′ ,F) = Hi(X,ϕX∗ρX∗F)→ Hi(XT , ρX∗F)

is an isomorphism.

Proof. Note that the composition ϕ ◦ ρ is a universal homeomorphism
since the residue field of R is k ([Sta21, Tag 01S2, Tag 04DF]), so that
the composition ϕX ◦ ρX is a homeomorphism as well. In this way, we
can canonically identify the groups Hi(XT ′ ,F) and Hi(X,ϕX∗ρX∗F).
The latter map in (13) is then the first edge homomorphism associated
to the Leray spectral sequence for π ◦ ϕX described in subsection 2.2.

To prove the claim, we’ll argue that for any abelian sheaf F on XT ′ ,
the higher direct images RiϕX∗(ρX∗F) = 0 (on the small site associated
to the underlying topological space of X) vanish for every integer i > 0.
The claim then follows from [Sta21, Tag 01F4].

Let x ∈ X be any point. Then we can compute the stalk of the sheaf
RiϕX∗(ρX∗F) at x as the colimit, over all opens U ⊂ X containing x,

(RiϕX∗(ρX∗F))x = lim−→
x∈U

Hi(ϕ−1
X (U), (ρX∗F)|ϕ−1

X (U)),

see [Har77, Chapter 3, Proposition 8.1]. Because x has a neighborhood
basis consisting of affine open subsets of X, we can restrict the set of
opens appearing in the colimit to only those opens which are affine.
The restriction map

Hi(ϕ−1
X (U), (ρX∗F)|ϕ−1

X (U))→ Hi(ϕ−1
X (W ), (ρX∗F)|ϕ−1

X (W ))

appearing in the above colimit, associated to the inclusion of affine
opens W ⊂ U , fits into the following the commutative diagram

Hi(ϕ−1
X (U), (ρX∗F)|ϕ−1

X (U)) Hi(ϕ−1
X (W ), (ρX∗F)|ϕ−1

X (W ))

Hi(ϕ−1
X (U), (ρX |UT ′ )∗(F|UT ′ )) Hi(ϕ−1

X (W ), (ρX |WT ′ )∗(F|WT ′ ))

Hi(UT ′ ,F|UT ′ ) Hi(WT ′ ,F|WT ′ ).

The vertical arrows in the top square are natural isomorphisms gotten
by base change for the given sheaves [Sta21, Tag 0FN2]; the vertical
arrows in the bottom square are the canonical edge homomorphisms
which, by Lemma 2.6, are also isomorphisms.

Since W and U are affine, the maps WT ′ → UT ′ are spectral and it
follows from both the above work and [Sta21, Tag 0A37] that there are

https://stacks.math.columbia.edu/tag/01S2
https://stacks.math.columbia.edu/tag/04DF
https://stacks.math.columbia.edu/tag/01F4
https://stacks.math.columbia.edu/tag/0FN2
https://stacks.math.columbia.edu/tag/0A37
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isomorphisms

(RiϕX∗(ρX∗F))x ∼= lim−→
x∈U

Hi(UT ′ ,F|UT ′ ) ∼= Hi(Z,F|Z)

where Z = lim←−U U ×k T
′ = Spec(OX,x ⊗k R), cf. [Sta21, Tag 01YZ].

Since R is assumed to be an artinian k-algebra with R/mR
∼= k, the

ring OX,x⊗kR is a local ring [Swe75]. But this implies that Z is a local
scheme, so that Hi(Z,F|Z) = 0 for all i > 0 as desired. □

2.5. Sheafifications. If π : X → S is any S-scheme, then for any
abelian sheaf F on the big Zariski site Sch/X of X, and for any i ≥ 0,
we’ve constructed the higher direct image functor Riπ∗F as a sheaf on
the big Zariski site Sch/S of S. If τ is any topology on Sch/S finer than
the Zariski topology, then we get an associated sheafification (Riπ∗F)τ
of Riπ∗F which is a sheaf for the τ -topology.

In this article, the topologies on the category Sch/S that we will
be primarily interested in are the fppf, étale, and Zariski topologies.
Associated with the canonical comparsions of the given big sites for
these topologies are natural comparison morphisms of functors

(14) Riπ∗F → (Riπ∗F)ét → (Riπ∗F)fppf .

Remark 2.8. If S ′/S is any extension of S, then there is a commutative
square of morphisms of big Zariski sites

Sch/XS′ Sch/S ′

Sch/X Sch/S.

From this we get natural isomorphisms

(15) RiπS′∗(F|XS′ ) ∼= (Riπ∗F)|S′

showing that formation of higher direct image functors is compatible
with changing the base (cf. [Sta21, Tag 0EYV] in the case i = 0).

If τ is any topology on the category of schemes which is finer than
the Zariski topology, then the same is true for the sheafifications of the
higher direct image functors in the τ -topology. More precisely, there is
a commutative square of morphisms of sites

(Sch/S ′)τ Sch/S ′

(Sch/S)τ Sch/S.

https://stacks.math.columbia.edu/tag/01YZ
https://stacks.math.columbia.edu/tag/0EYV
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Restriction along either of the horizontal arrows takes a sheaf to its
sheafification in the τ -topology [Sta21, Tag 0EWI], so

(16)
(
RiπS′∗(F|XS′ )

)
τ
∼=
(
(Riπ∗F)|S′

)
τ
∼=
(
(Riπ∗F)τ

)
|S′

by the functorality of restriction along the composition of morphisms
of sites [Sta21, Tag 03CB]

3. Locally of finite presentation

In this section we fix a base scheme S and an S-scheme π : X → S.
Given any functor F : (Sch/S)op → Set and any inverse system {Ti}i∈I
of schemes over S with inverse limit T , there is a natural map

(17) lim−→
i

F (Ti)→ F (T ).

Recall that such a functor F is said to be locally of finite presentation
if the map (17) is a bijection for every affine scheme T over S that can
be written as an inverse limit T = lim←−Ti of a filtered inverse system of
affine schemes {Ti}i∈I over S.

Proposition 3.1. Suppose that π is quasi-compact and quasi-separated.
Let F be an abelian sheaf for the big Zariski site Sch/X and assume
that F is locally of finite presentation. Then, for any integer i ≥ 0, the
higher direct image functors

Riπ∗F , (Riπ∗F)ét, and (Riπ∗F)fppf

are all locally of finite presentation.

Proof of Proposition 3.1. We will show, under the assumptions of the
proposition, that the ith cohomology functor on S-schemes

T/S → Hi(X ×S T,FXT
)

is locally of finite presentation. Then it follows directly from [Sta21,
Tag 049O] that the fppf sheafification (Riπ∗F)fppf of this functor is
also locally of finite presentation. To get the same result for the Zariski
and étale sheafifications, one can observe that the proof in [Sta21, Tag
049O] goes through virtually without change in these cases also, so that
Riπ∗F and (Riπ∗F)ét are locally of finite presentation too.

So let {Tj = Spec(Aj), ρj′,j : Tj′ → Tj}j∈J be a filtered inverse system
of affine schemes over S and let T = Spec(A), with A = lim−→Aj, be the
inverse limit considered as a scheme over S. For any index j ∈ J , we
write ρj : T → Tj for the projection map. We start by noting that the

https://stacks.math.columbia.edu/tag/0EWI
https://stacks.math.columbia.edu/tag/03CB
https://stacks.math.columbia.edu/tag/049O
https://stacks.math.columbia.edu/tag/049O
https://stacks.math.columbia.edu/tag/049O
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maps of (SC2), associated to any of the arrows ρj′,j : Tj′ → Tj, yield
a directed system of sheaves on X ×S T

ρ−1
j,XFXTj

→ ρ−1
j′,XFXTj′

.

The colimit of this directed system admits a canonical morphism

(18) L := lim−→
j

ρ−1
j,XFXTj

→ FXT

and the comparison map lim−→j
Hi(X ×S Tj,FXTj

) → Hi(X ×S T,FXT
)

factors via

lim−→
j

Hi(X ×S Tj,FXTj
)

∼−→ Hi(X ×S T,L)→ Hi(X ×S T,FXT
).

Here the left arrow is the canonical isomorphism of [Sta21, Tag 0A37]
and we are using the assumption that π : X → S is quasi-compact
and quasi-separated in order to realize the topological space X ×S T
as a spectral space written as the limit of spectral spaces X ×S Tj
along quasi-compact, and hence spectral, maps, cf. [Sta21, Tag 08YF].
Therefore, to complete the proof, it suffices to show that the morphism
of sheaves in (18) is an isomorphism.

This is a claim that can be checked on stalks and, for any t ∈ X×ST ,
there are canonical isomorphisms(

lim−→
j

ρ−1
j,XFXTj

)
t

∼= lim−→
j

(
ρ−1
j,XFXTj

)
t

∼= lim−→
j

(
FXTj

)
ρj,X(t)

∼= lim−→
j

F(Spec(OXTj
,ρj,X(t)))

∼= F(lim←−
j

Spec(OXTj
,ρj,X(t)))

∼= F(Spec(OXT ,t))
∼= (FXT

)t .

In the above we’ve used the locally finite presentation assumption on
F to go from line 3 to line 4, by taking the inverse limit of the system
of affine open neighborhoods containing ρj,X(t) to identify (FXTj

)ρj,X(t)

and F(Spec(OXTj
,ρj,X(t))), as well as to go from line 4 to line 5. □

As an immediate corollary to Proposition 3.1, we get a computation
for the stalks of the Zariski and étale higher direct image functors:

https://stacks.math.columbia.edu/tag/0A37
https://stacks.math.columbia.edu/tag/08YF
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Corollary 3.2. Let π : X → S be quasi-compact and quasi-separated.
Let T/S be an arbitrary scheme over S, pick a point t ∈ T , and choose
a geometric point t : Spec(Ω) → T lying over t (i.e. the ring Ω is an
algebraically closed field and t corresponds to an embedding κ(t) ⊂ Ω).
Let R = Spec(OT,t) be the spectrum of the local ring OT,t of t ∈ T and
let Rsh = Spec(OshT,t) be the spectrum of the strict henselization OshT,t.
Then there are natural isomorphisms

(19)
(
Riπ∗F

)
t

= Riπ∗F(R) = Hi(XR,FXR
)

and

(20)
(
Riπ∗F

)
ét,t

=
(
Riπ∗F

)
ét

(Rsh) = Hi(XRsh ,FX
Rsh

)

for any abelian sheaf F on the big Zariski site Sch/X of X which is
locally of finite presentation.

Proof. The isomorphism on the left in (19) is a direct consequence of
Proposition 3.1. To see the right isomorphism in (19), we note that

Riπ∗F(R) = H0(R,RiπR∗FXR
)

and the right hand side is canonically Hi(XR,FXR
) since R is local.

For the equation (20) with étale sheaves we recall that, by definition,
the stalk at t of any étale presheaf is computed as the colimit(

Riπ∗F
)
ét,t

= lim−→
(U,u)

(
Riπ∗F

)
ét

(U),

where the index runs over all étale neighborhoods (U, u) of t. We can
consider only affine schemes in the colimit without changing anything.
The isomorphism on the left of equation (20) now follows directly from
Proposition 3.1 and [Sta21, Tag 04GW].

By [Sta21, Tag 03PT], there is a canonical isomorphism(
Riπ∗F

)
ét,t

= (Riπ∗F)t

where the right hand side is the stalk at t of the Zariski sheaf considered
as an étale presheaf. As before, the right hand side here is Riπ∗F(Rsh)
which, since Rsh is local, equals Hi(XRsh ,FX

Rsh
). □

Remark 3.3. Let π : X → k be any scheme over a fixed base field k.
Let F/k be any field extension of k. Then there are isomorphisms

Riπ∗F(F ) = H0(F,RiπF∗FXF
) = Hi(XF ,FXF

).

If π is quasi-compact and quasi-separated, and if F is locally of finite
presentation, then letting F s denote a fixed separable closure of F
with absolute Galois group GF = Gal(F s/F ) we find (e.g. by applying

https://stacks.math.columbia.edu/tag/04GW
https://stacks.math.columbia.edu/tag/03PT
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[Mil80, Chapter II, Proposition 1.4] at the finite level and writing F s

as a colimit) that

(Riπ∗F)ét(F ) = Hi(XF s ,FXFs )GF .

Similarly, if (A,mA) is a local artinian F -algebra with residue field
A/mA

∼= F , then [Sta21, Tag 03SI] implies that

(Riπ∗F)ét(R
′) = Hi(XR′

Fs
,FXR′

Fs
)GF

where R′ = Spec(A). If (B,mB) is a second local artinian F -algebra
with B/mB

∼= F which admits a surjection B → A of local F -algebras
then, because of Remark 2.5 and Lemma 2.6, the induced map

(Riπ∗F)ét(R)→ (Riπ∗F)ét(R
′),

where R = Spec(B), is equivalent to the map gotten by taking GF -
invariants of the canonical reduction map

Hi(XRFs ,FXRFs
)→ Hi(XR′

Fs
,FXR′

Fs
)

induced by the sheaf morphism in (5).

4. K-theory sheaves

If π : X → S is any given S-scheme, then the primary examples of
abelian sheaves on the big Zariski site Sch/X that we’ll be interested in,
in this text, come from constructions in K-theory. There are three such
families of sheaves that we can define on Sch/X and each of them comes
from restriction, along the unique morphism of sites Sch/X → Sch/Z,
of families of sheaves defined on Sch/Z.

Specifically, for any integer n ≥ 0 we’ll consider the nth Milnor,
Quillen, and Thomason K-theory sheaves on the big Zariski site Sch/Z;
we denote these sheaves by

(21) KMn,Z, KQn,Z, and KTn,Z
respectively. We briefly recall how each of these sheaves is constructed,
in the subsections below, along with some of their natural compatibility.

4.1. Milnor K-theory. We handle the Milnor K-theory sheaves first.
For a commutative ring R, and for any integer n ≥ 0, we write KM

n (R)
for the degree n graded summand of the graded quotient ring

KM
∗ (R) = TZ(R×)/I,

where TZ(R×) is the graded tensor Z-algebra of the group of units R×

and I ⊂ TZ(R×) is the homogeneous two-sided ideal generated by all
of those elements of the form a⊗ (1− a) with both a and 1− a in R×.

https://stacks.math.columbia.edu/tag/03SI
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For a scheme Y , we let KMn,Y denote the abelian sheaf on the underlying
topological space of Y associated to the presheaf

(U
open
⊂ Y )⇝ KM

n (OY (U))

with restriction maps induced by the restriction maps of the structure
sheaf OY . For any n ≥ 0, the sheaf KMn,Z on the big Zariski site Sch/Z
is then that sheaf, specified by [Sta21, Tag 0213], with (SC1) given by

(KMn,Z)Y = KMn,Y
for any scheme Y , and with (SC2) for a morphism ρ : Y ′ → Y given
by adjunction of the canonical maps

KMn,Y → ρ∗KMn,Y ′

induced by the corresponding map of presheaves and the structural
morphism OY → ρ∗OY ′ . In this case the properties (SR1) and (SR2)
follow from the functorality of Milnor K-theory.

4.2. Quillen K-theory. Next, we define the QuillenK-theory sheaves
on the big site Sch/Z. Here there are two, a priori possibly different,
constructions of such sheaves for any integer n ≥ 0. However, it turns
out that both constructions give the same result. Let Y be any scheme,
let n ≥ 0 be an integer, and consider the two presheaves KQ,rn,Y and KQ,sn,Y

on the underlying topological space of Y defined by the associations

(U
open
⊂ Y )⇝ KQ

n (OY (U)) and (U
open
⊂ Y )⇝ KQ

n (U)

respectively; here we are using the Quillen K-theory of rings for KQ,rn,Y ,
i.e. the Quillen K-theory of the exact category of finitely generated
projective modules, and of schemes for KQ,sn,Y , i.e. the Quillen K-theory
of locally free sheaves of finite rank, as defined in [Qui73].

Due to the equivalence between locally free sheaves of finite rank on
an affine scheme and finitely generated projective modules under the
corresponding ring, for any open U ⊂ Y there is an identification

KQ
n (OY (U)) = KQ

n (Spec(OY (U)))

which, along with the canonical map of schemes U → Spec(OY (U)),
produces a homomorphism

KQ
n (OY (U)) = KQ

n (Spec(OY (U)))→ KQ
n (U)

that extends to a natural transformation KQ,rn,Y → K
Q,s
n,Y . The induced

map on sheafifications is an isomorphism, which can be checked on the
level of stalks by [Qui73, Proposition 2.2] and [Qui73, Example, p. 104].

We write KQn,Y for either of these canonically identified sheaves on Y .

https://stacks.math.columbia.edu/tag/0213
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Now for any n ≥ 0 we define the nth Quillen K-theory sheaf KQn,Z
on the big Zariski site Sch/Z by specifying, for the condition (SC1),

(KQn,Z)Y = KQn,Y
for any scheme Y . We also use, for the condition (SC2) for a morphism
of schemes ρ : Y ′ → Y , the morphism given by adjunction of the
canonical morphism

KQn,Y → ρ∗KQn,Y ′

induced by the corresponding transformation of presheaves associated
to the structure map OY → ρ∗OY ′ . Conditions (SR1) and (SR2)
then follow from the functorality of Quillen’s K-theory.

4.3. Thomason K-theory. Lastly, we treat the Thomason K-theory
sheaves. As in the case of both Milnor and Quillen K-theory, for any
integer n ≥ 0 the nth Thomason K-theory sheaf KTn,Z on the big Zariski

site Sch/Z is gotten by specifying sheaves KTn,Y , for any scheme Y , so
that one can take

(KTn,Z)Y = KTn,Y
for the condition (SC1) of KTn,Z; the condition (SC2) will also come
naturally as the morphism given by adjunction of canonical maps

KTn,Y → ρ∗KTn,Y ′

induced by a morphism of schemes ρ : Y ′ → Y . Lastly, the conditions
(SR1) and (SR2) will both follow from the functorality of Thomason’s
K-theory.

We take, as the definition for the nth Thomason K-theory sheaf KTn,Y
on the topological space underlying a scheme Y , the sheafification of
the presheaf

(U
open
⊂ Y )⇝ KT

n (U)

which assigns to an open U ⊂ Y the nth K-group KT
n (U) which, by

definition, is the nth homotopy group of the K-theory spectrum of the
complicial biWaldhausen category of perfect complexes of finite Tor-
dimension in the abelian category of all chain complexes of OU -modules
with cofibrations the degree-wise split monomorphisms and with weak
equivalences being quasi-isomorphisms, see [TT90, Definition 3.1].

4.4. Restriction. For any integer n ≥ 0 and for each of Milnor,
Quillen, and Thomason K-theory, i.e. for any of ∗ = M,Q, T , we write

(22) K∗
n,X := (K∗

n,Z)|X
for the restriction of the Zariski sheafK∗

n,Z to the big Zariski site Sch/X.
If now Y/X is any X-scheme, then there is an equality (K∗

n,X)Y = K∗
n,Y .
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Noticeably, there is some overlap in our notation between the K-theory
sheaves on both the big and small Zariski sites of X but, this does not
seem to cause any confusion.

4.5. Locally of finite presentation. For any S-scheme π : X → S,
and for any integer n ≥ 0, each of the sheaves KMn,X , KQn,X , and KTn,X is
locally of finite presentation. This follows from the analogue of [Sta21,
Tag 049O] for the Zariski topology, noting that each of the above three
functors is (the restriction of) the sheafification of a presheaf that is
locally of finite presentation (and also the restriction and sheafification
operations commute, cf. Remark 2.8).

For Milnor K-theory, local finite presentation of the given presheaf
is immediate from the definition; for Quillen K-theory this is due to
[Qui73, Example, p. 104] or [Qui73, Section 7, Proposition 2.2] and for
Thomason K-theory it follows from [TT90, Proposition 3.20].

4.6. Compatibility. For a fixed scheme X, and for any integer n ≥ 0,
there are natural transformations of sheaves on the big site Sch/X

(23) KMn,X
ψQ
M (n)
−−−−→ KQn,X

ψT
Q(n)
−−−→ KTn,X

and we summarize here what’s known about them. The transformation
ψQM(n) is defined at the level of rings: for any commutative ring R,
the direct sum of Quillen K-groups KQ

∗ (R) =
⊕

n≥0K
Q
n (R) has the

structure of a graded commutative ring and there is a homomorphism

R× = KM
1 (R)→ KQ

1 (R);

this homomorphism is natural in R and is an isomorphism whenever R
is local [Wei13, Chapter III, Lemma 1.4]. Multiplication in KQ

∗ (R) then
induces a natural map from the tensor algebra TZ(R×) to KQ

∗ (R) which,
due to both [Wei13, Chapter III, Lemma 5.10] and [Wei13, Chapter IV,
Example 1.10.1], induces group homomorphisms KM

n (R) → KQ
n (R).

This yields natural transformations of presheaves for any n ≥ 0

(U
open
⊂ Y )⇝

(
KM
n (OY (U))→ KQ

n (OY (U))
)

which sheafify to the transformations ψQM(n).
The natural transformation ψTQ(n) is defined at the level of schemes:

for any scheme Y , the K-theory spectrum Knaive(Y ) of the complicial
biWaldhausen category of strictly perfect complexes in the category
of all chain complexes of OY -modules, with weak equivalences being
quasi-isomorphisms and cofibrations degree-wise split monomorphisms,
has the property πn (Knaive(Y )) = KQ

n (Y ) by [TT90, Proposition 3.10].
For any integer n ≥ 0, the inclusion of the category of strictly perfect

https://stacks.math.columbia.edu/tag/049O
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complexes of OY -modules into the category of perfect complexes of
OY -modules with finite Tor-dimension induces a group homomorphism
KQ
n (Y )→ KT

n (Y ) that’s natural in Y . The natural transformations of
presheaves that result from these maps

(U
open
⊂ Y )⇝

(
KQ
n (U)→ KT

n (U)
)

sheafify to the transformations ψTQ(n).

For every integer n ≥ 0, the comparison ψTQ(n) is an isomorphism.
This can be checked on stalks since, for any scheme Y and any affine
open subscheme U ⊂ Y , the map KQ

n (U)→ KT
n (U) is an isomorphism

[TT90, Corollary 3.9] since OU itself is an ample family of line bundles.

The transformations ψQM(n) are also known to be isomorphisms if either
n ≤ 1 or n = 2 and X has infinite residue fields. This is clear for n = 0,
it follows from [Wei13, Chapter III, Lemma 1.4] for n = 1, and it follows
from [vdK77] in the case n = 2 (see also [NS89, Corollary 4.3]).

4.7. Examples. Let k be any field and fix a k-scheme π : X → k.
For some low values of the integers i and n, one can often idnetify the
higher direct images Riπ∗Kn,X with other, more well-known, functors.
We consider the cases where n ≤ i ≤ 1 below, and we write Riπ∗Kn,X
for any of the higher direct images associated to any of the (canonically
identified) K-theory sheaves on the big Zariski site of X.

To start, let ZbX be the constant sheaf on the big Zariski site of X
associated to the abstract group Z. There is a natural transformation

ZbX → K0,X

induced, on the level of presheaves, by sending 1 to 1. One can check,
by passing to stalks, that this morphism is therefore an isomorphism.
Hence one also has an isomorphism π∗ZbX ∼= π∗K0,X .

Remark 4.1. The functor ZbX is representable by a group X-scheme
[Sta21, Tag 03P5] and, thus, ZbX is also a sheaf in the étale topology.
Moreover, for any X-scheme Y → X, one can identify ZbX(Y ) with the
group of locally constant functions from the topological space Y to Z.

Theorem 4.2. Let k be a field and let X/k be geometrically connected.
Then there is a natural isomorphism

π∗K0,X
∼= Homk(−,Z),

where we write Z for the constant group k-scheme, locally of finite type
over k, associated to the abstract group Z.

Proof. Since X is geometrically connected we have that

π∗K0,X(k) = H0(X,ZX) = Z.

https://stacks.math.columbia.edu/tag/03P5
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Let 1k denote the positive generator for this group. For a k-scheme T ,
we write 1T for the image of 1k under the induced homomorphism

π∗K0,X(k)→ π∗K0,X(T )

associated to the structure map of T . Let Zbk be the constant presheaf
on the big Zariski site of k associated to the group Z. There is then an
induced natural transformation

Zbk → π∗K0,X

sending the element 1 ∈ Zbk(T ) to 1T ∈ π∗K0,X(T ). Since the rightmost
functor is a sheaf for the Zariski topology, there is an associated natural
transformation

Zbk → π∗K0,X

which identifies on a scheme T/k with the map

Zbk(T ) = H0(T,ZT )→ H0(XT ,ZXT
) = π∗K0,X(T )

induced by projecting XT → T . Since X is geometrically connected,
the projection XT → T induces a bijection on connected components
[Sta21, Tag 0385] and, consequently, this map is an isomorphism. □

Remark 4.3. Assume that π : X → k is a separated and finite type k-
scheme. Then there exists an étale k-scheme π0(X/k) with a canonical
faithfully flat map X → π0(X/k) having the property that, for any
field extension F/k, the F -points of π0(X/k) are in bijection with the
geometrically connected components of XF [DG70, Ch. I, §4, n◦ 6].

The sheafification of the constant presheaf Zbπ0(X/k) associated to Z on

the big Zariski site for Sch/π0(X/k) is representable [Sta21, Tag 03P5].
If Zπ0(X/k) is the associated representing scheme for this functor, then
the Weil restriction Resπ0(X/k)/k(Zπ0(X/k)), from π0(X/k) to k, exists as
a k-scheme [BLR90, 7.6, Theorem 4]. Moreover, for any k-scheme T/k
there are natural identifications

Homk(T,Resπ0(X/k)/k(Zπ0(X/k))) = Homπ0(X/k)(Tπ0(X/k),Zπ0(X/k))
and the latter set is canonically the set of all Zariski locally constant
maps from the space π0(X/k)×k T to the abstract group Z.

For any k-scheme T/k, composition with the map X×kT → Tπ0(X/k)
yields a map

Homk(T,Resπ0(X/k)/k(Zπ0(X/k)))→ H0(XT ,ZXT
) = π∗K0,X(T ).

As these maps are natural in the argument T/k, they define a natural
transformation between the functors Homk(−,Resπ0(X/k)/k(Zπ0(X/k)))
and π∗K0,X . One can then check that this natural transformation is an
isomorphism, cf. [BW19, Proposition 1.1].

https://stacks.math.columbia.edu/tag/0385
https://stacks.math.columbia.edu/tag/03P5
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We next consider the Zariski sheaf of units Gm,X on the site Sch/X.
The sheaf Gm,X is known to be representable by a group scheme which
we also denote by Gm,X . We can canonically identify K1,X with Gm,X .

Theorem 4.4. Let k be a field and let π : X → k be a proper scheme.
Set A = H0(X,OX) and write S = Spec(A). Then the functor π∗K1,X

is representable by the group k-scheme ResS/k(Gm,S).

Proof. We first remark that, since A is a finite k-algebra as X is proper
[Sta21, Tag 02O6], the Weil restriction ResS/k(Gm,S) exists as a k-
scheme, see [BLR90, 7.6, Theorem 4]. Now there exists a canonically
defined factorization of π into a composition

X
ϕ−→ S

ρ−→ k

and we use this factorization to define a natural transformation

ResS/k(Gm,S)→ π∗Gm,X .

For any scheme T/k one has natural identifications

π∗Gm,X(T ) = HomX(TX ,Gm,X) = OTX (TX)×,

where OTX (TX)× is the group of units of the ring OTX (TX), and

Homk(T,ResS/k(Gm,S)) = HomS(TS,Gm,S) = OTS(TS)×.

We take as our definition of a natural transformation the map

π∗Gm,X(T )→ Homk(T,ResS/k(Gm,S))

coming from taking global sections of the induced map OTS → ϕT∗OTX .
But note that since X → S is proper, and TS → S is flat, the morphism
OTS → ϕT∗OTX is an isomorphism [Sta21, Tag 02KH]. □

Lastly, we observe that due to the identification of K1,X and Gm,X ,
there is a canonical isomorphism between R1π∗K1,X and R1π∗Gm,X .
The latter of these sheaves is well-known to be isomorphic with the
relative Zariski Picard functor PicX/k,(Zar), see [Kle05, Remark 9.2.11].
If X is proper, then the Picard functor (R1π∗K1,X)fppf ∼= PicX/k,(fppf)
is representable by a scheme locally of finite type over k, see [Mur64,
II.15, Theorem 2] and also [Oor62].

More generally, if S is any scheme and π : X → S is an S-scheme
then R1π∗K1,X is still canonically identifiable with the Zariski Picard
functor PicX/S,(Zar) by [Kle05, Remark 9.2.11]. Representability of the
sheaf (R1π∗K1,X)fppf has been studied in many places, see for example
[Art69, §7] and the end of [Kle05, §9.4] for a survey.

https://stacks.math.columbia.edu/tag/02O6
https://stacks.math.columbia.edu/tag/02KH
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5. Effective pro-representability

Let S be a fixed but arbitrary scheme and let F : (Sch/S)op → Set
be any functor. For any field F , and for any F -point s : Spec(F )→ S,
we write F|s : (Sch/F )op → Set for the restriction of F to Sch/F by s.
Given an element ξ0 ∈ F|s(F ), one can define deformation functors

(24) Defξ0(F|s) : ArtF → Set

from the category ArtF , whose objects are all local artinian F -algebras
(A,mA) with residue field A/mA

∼= F and with morphisms between
two objects being local F -algebra homomorphisms, by setting

(25) Defξ0(F|s)(A) = {ξA ∈ F|s(Spec(A)) : F|s(ι)(ξA) = ξ0},
where ι : Spec(A/m) → Spec(A) is the closed immersion associated
with the canonical quotient.

The functor Defξ0(F|s) is said to be pro-representable if there is a
complete local noetherian F -algebra (R,mR) such that the quotients
R/mt

R are objects of ArtF for all t ≥ 1 together with a natural bijection

(26) Defξ0(F|s)(A) = Homlocal F -alg(R,A)

for all objects (A,mA) of ArtF . For simplicity, we will also say that
the functor F is pro-representable if for every field F , for every finite
type F -point s : Spec(F )→ S, and for every element ξ0 ∈ F|s(F ) the
functor Defξ0(F|s) is pro-representable.

Let ÂrtF be the category whose objects are all of the local noetherian
F -algebras (A,mA) such that A is mA-adically complete and A/mt

A is
an object of ArtF for all t ≥ 1; morphisms of this category are local
homomorphisms of F -algebras. The category ArtF is a full subcategory

of ÂrtF and there are two natural ways to extend the above functor of
deformations of ξ0 to this larger category. First, we can simply consider
the restriction of F|s to this larger collection of rings which we denote

Defcξ0(F|s) : ÂrtF → Set;

these functors are defined identically with (25) but, for objects (A,mA)

of the larger category ÂrtF .
Second, we can consider the completed functors

D̂efξ0(F|s) : ÂrtF → Set

defined on a local F -algebra (A,mA) of the category ÂrtF by

D̂efξ0(F|s)(A) := lim←−tDefξ0(F|s)(A/mt
A),

with associated maps those that are canonically induced in the limit.
Note that, since the Hom functor commutes with limits in the second
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argument, the functor Defξ0(F|s) is pro-representable if and only if the

completed functor D̂efξ0(F|s) is genuinely representable, i.e. Defξ0(F|s)
is pro-representable if and only if there is a complete local noetherian

F -algebra (R,mR) of ÂrtF and a natural bijection

(27) D̂efξ0(F|s)(A) = Homlocal F -alg(R,A)

for all objects (A,mA) of ÂrtF .

Remark 5.1. Let π : X → S be an S-scheme and let τ be any topology
that is at least as fine as the Zariski topology on Sch/X. If F is an
abelian sheaf for the τ -topology then, because of Remark 2.8, a higher
direct image functor (Riπ∗F)τ is pro-representable if and only if for
every field F and, for every finite type F -point s : Spec(F )→ S, all of
the functors (Riπs∗(F|Xs))τ are pro-representable. In other words, the
pro-representability of a higher direct image functor is implied by the
pro-representability of the higher direct image functor of the fibers.

For any complete local noetherian F -algebra (A,mA) of ÂrtF , we say

that elements of the set D̂efξ0(F|s)(A) are formal deformations of ξ0
over A. A formal deformation is said to be effective if it is in the image
of the canonical morphism

(28) Defcξ0(F|s)(A)→ D̂efξ0(F|s)(A).

As a final point of terminology, we say that F : (Sch/S)op → Set is
effectively pro-representable if for every field F , for every finite type F -
point s : Spec(F )→ S, and for every element ξ0 ∈ F|s(F ), the functor
Defξ0(F|s) is both pro-representable and if the formal deformation of
ξ0 associated to the identity, under the bijection from (27), is effective.

Lemma 5.2. Let F : (Sch/S)op → Set be given and suppose that F is
effectively pro-representable. Then for every complete local noetherian

F -algebra A of ÂrtF , for every finite type F -point s : Spec(F ) → S,
and for every element ξ0 ∈ F|s(F ), the morphism of (28) is surjective.

Proof. Let R be the complete local Noetherian F -algebra representing

the functor D̂efξ0(F|s). Let A be as above and let ξ ∈ D̂efξ0(F|s)(A)
be given. There’s then a morphism f : R → A so that the following

diagram commutes and with F̂ |s(f)(idR) = ξ.

Defcξ0(F|s)(A) D̂efξ0(F|s)(A)

Defcξ0(F|s)(R) D̂efξ0(F|s)(R)

F|s(f) F̂|s(f)
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The claim now follows from the assumption that idR is effective. □

Lemma 5.3. Let F : (Sch/S)op → Set be a pro-representable functor
and suppose that for every field F , for every F -point s : Spec(F )→ S
of S of finite type, and for every element ξ0 ∈ F|s(F ) the map

Defcξ0(F|s)(R)→ D̂efξ0(F|s)(R)→ Defξ0(F|s)(R/m2
R)

is surjective for (R,mR) the complete local ring representing D̂efξ0(F|s).
Then F is effectively pro-representable.

Proof. The claim to be proved, in this notation, is that the universal
formal deformation of ξ0 (i.e. the formal deformation associated to the
identity) is effective. However, under the assumptions of the lemma,
Artin has shown in [Art69, Section 1] the more general statement that
an arbitrary versal formal deformation of ξ0 is effective. □

5.1. Abelian functors. From now on, we fix an arbitrary field k (to
be used as a base) and we write F : (Sch/k)op → Ab for an arbitrary
functor valued in the category abelian groups. The following lemma
says that checking pro-representability of F can reduced to checking
at the identity element; the proof of the lemma is immediate from the
definitions, but we include it here for completeness.

Lemma 5.4. Let F/k be a finite field extension. Let 0F ∈ F(F ) be
the identity of this group and let ξ ∈ F(F ) be an arbitrary element.
Then, if Def0F (F) is pro-representable, the functor Defξ(F) is pro-
representable as well.

Proof. For any complete local noetherian F -algebra (R,mR) of ÂrtF ,
there are natural homomorphisms F → R→ F , namely the F -algebra
map and the quotient map, which compose to the identity map on F .
At the functor level, the induced maps

F(F )→ F(Spec(R))→ F(F )

realizes a canonical inclusion F(F ) ⊂ F(Spec(R)) which splits the

map induced by the quotient. Since morphisms in ÂrtF are local, this
inclusion is independent of the choice of the ring R. More precisely,
given any ring map ρ : R→ R′ between R and another object (R′,mR′)

of ÂrtF , the following diagram commutes

F(F ) F(Spec(R)) F(F )

F(F ) F(Spec(R′)) F(F ).

F(ρ)
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Suppose then that there is a complete local noetherian F -algebra R
and a canonical isomorphism of functors

Def0F (F)(−) = Homlocal F -alg(R,−).

Subtracting ξ ∈ F(F ) then yields a canonical isomorphism

Defξ(F)(−)
ξ′ 7→ξ′−ξ−−−−−→ Def0F (F)(−) = Homlocal F -alg(R,−)

as can be readily checked by evaluating the maps at any local artinian
F -algebra (A,mA) of ArtF . □

Checking the effectivity of pro-representability can also be reduced
to checking the appropriate claim at the identity element of the group.

Lemma 5.5. Let F/k be a finite field extension. Let 0F ∈ F(F ) be
the identity of this group and let ξ ∈ F(F ) be an arbitrary element.
Assume that F is pro-representable.

If the formal deformation associated to the identity map in D̂ef0F (F)
is effective, then the formal deformation associated to the identity map

in D̂efξ(F) is effective.

Proof. Making identifications as in Lemma 5.4, the claim follows from
the commutativity of the square below

Defc0F (F)(A) D̂ef0F (F)(A)

Defcξ(F)(A) D̂efξ(F)(A)

ξA 7→ξA+ξ ξA 7→ξA+ξ

for any complete local noetherian ring A of ÂrtF . Here the horizontal
arrows are the map from (28). □

5.2. Higher direct images of K-theory sheaves. Throughout this
subsection we study the pro-representability and the effective pro-
representability of the higher direct images Riπ∗Kn,X associated to an
S-scheme π : X → S. Here we present our main result, Theorem 5.15,
which proves the effectivity of pro-representability in some new cases.
As a corollary to this theorem, and of the results above, we obtain an
algebraizability result for the higher direct image functors.

Proposition 5.6. Let k/Q be an algebraic extension of Q, let S/k be
a finite type k-scheme, and let π : X → S be a quasi-compact and
quasi-separated S-scheme. Then the following statements hold.
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(1) Suppose that, for every field F and for every finite-type F -point
s : Spec(F ) → S, the fiber π−1(s) = Xs is a smooth, proper,
and geometrically connected variety satisfying

Hi(Xs,OXs) = Hi+1(Xs,OXs) = 0.

Then both Riπ∗KM2,X and (Riπ∗KM2,X)ét are pro-representable.
Further, these functors are pro-represented at s by the F -algebra
R = F [[t1, ..., tr]] where r = dimF Hi(Xs,Ω

1
Xs

).
(2) Suppose that, for every field F and for every finite-type F -point

s : Spec(F ) → S, the fiber π−1(s) = Xs is a smooth, proper,
and geometrically connected variety satisfying both

Hi(Xs,OXs) = Hi+1(Xs,OXs) = Hi+2(Xs,OXs) = 0

and also

Hi(Xs,Ω
1
Xs

) = Hi+1(Xs,Ω
1
Xs

) = 0.

Then both Riπ∗KM3,X and (Riπ∗KM3,X)ét are pro-representable.
Further, these functors are pro-represented at s by the F -algebra
R = F [[t1, ..., tr]] where r = dimF Hi(Xs,Ω

2
Xs

).

Proof. It suffices, by Remark 5.1, to prove the same claim for the each
of the fibers. In this way, we reduce to the case where the base scheme S
is a field which, by abuse of notation, we call k. We write π : X → k for
the structure map and let F/k be any finite field extension of k. We first
prove the claim of (1) only for the functor Riπ∗KM2,X . Then, separately,

we give an analogous proof for the étale sheafification (Riπ∗KM2,X)ét.
The proof of the claim in (2) will be similar.

By Lemma 5.4, it suffices to check that the functor of deformations
Def0F (Riπ∗KM2,X) of the identity 0F ∈ Riπ∗KM2,X(F ) is pro-representable.
Now it’s an immediate consequence of the construction of the higher
direct image functors, see Remark 2.5, that the deformation functor
Def0F (Riπ∗KM2,X) : ArtF → Set is isomorphic to the tangent functor

T i,2
X : ArtF → Set defined by

T i,2
X (A) = ker

(
Hi(XT ,KM2,XT

)→ Hi(XF ,KM2,XF
)
)

where T = Spec(A) is a local artinain F -algebra with residue field F .
With the given assumptions on X, the latter functor was shown to be
pro-representable by Bloch in [Blo75] where, moreover, it was shown
that there is a natural isomorphism T i,2

X (A) = Hi(XF ,Ω
1
XF

)⊗F mA for
the maximal ideal mA of A.

Similarly, as a result of the description of Remark 3.3, the functor of
deformations Def0F ((Riπ∗KM2,X)ét) of the identity 0F ∈ (Riπ∗KM2,X)ét(F )
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is canonically isomorphic to the functor T i,2
X,ét : ArtF → Set defined by

T i,2
X,ét(A) = ker

(
Hi(XT ,KM2,XT

)GF → Hi(XF s ,KM2,XFs )GF
)

where F s is a fixed separable closure of F , where GF = Gal(F s/F ) is
the absolute Galois group, and where T = Spec(A ⊗F F s). Now the
result again follows from Bloch’s result in [Blo75] and, further, there is
a canonical identification T i,2

X (A) = T i,2
X,ét(A).

The same idea works to show the claim of (2), using the main result
of [Mac23] and the functors T i,3

X defined there. □

Example 5.7. Let k be an algebraic extension of Q and suppose that
π : X → k is a smooth, proper, and irreducible surface with geometric
genus pg(X) = dim H0(X,Ω2

X) = 0. Then the assumptions of (1) hold
for i = 2, hence both R2π∗KM2,X and (R2π∗KM2,X)ét are pro-representable.

If, moreover, H1(X,OX) = 0 then this pro-representability is trivially
effective since in this case H2(X,Ω1

X) = 0.

Example 5.8. Let k be an algebraic extension of Q and suppose that
π : X → k is a smooth, proper, and irreducible threefold with both
H3(X,OX) = 0 and H2(X,OX) = 0. Then the assumptions of (2) hold
for i = 3, hence both R3π∗KM3,X and (R3π∗KM3,X)ét are pro-representable.

If, moreover, H1(X,OX) = 0 then this pro-representability is trivially
effective as well since in this case H3(X,Ω2

X) = 0.

Example 5.9. If k is an algebraic extension of Q and if π : X → k is
a smooth, proper, and irreducible scheme such that the Chow motive
of X is a direct sum of Tate motives, then the Hodge numbers hp,q = 0
vanish for all (p, q) with p ̸= q, cf. [Tot16, Theorem 4.1]. More generally,
to get vanishing of the Hodge numbers it is sufficient to assume that
the motive of XF over an algebraic closure F = Q̄ is mixed Tate [Tot16,
Corollary 7.3]. This gives examples where both (1) and (2) hold.

Example 5.10. Over an algebraic closure Q̄ of Q, there are smooth
and proper threefolds that are both irrational and unirational, see
[AM72]. For such varieties the assumptions of (1) hold for any i ≥ 1 by
[ACTP17, Proposition 1.11 and Proposition 1.8]. Moreover, because of
[ACTP17, Theorem 1.4], for any such threefold X there exists a field
F/Q̄ with ker(deg : CH0(XF )→ Z) ̸= 0.

Remark 5.11. The following observation will be used often below.
Suppose that k is a field and R = k[[t1, ..., tr]] is a ring of formal power
series over k in finitely many variables. Let X be a smooth scheme,
geometrically connected and quasi-compact over k. Then the product
X ′ = X ×k Spec(R) is a connected, regular, and excellent Noetherian
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scheme of finite Krull dimension. Indeed, if U = Spec(B) is an affine
open subset of X, then B is a finitely generated k-algebra and B⊗kR is
Noetherian by Hilbert’s basis theorem. Thus X ′ is locally Noetherian
and the composition X ′ → Spec(R) → k is quasi-compact, so X ′ is
locally Noetherian and quasi-compact, hence Noetherian.

Since X is geometrically connected and R is integral, it follows that
X ′ is connected, [Sta21, Tag 0385]. One can compute the dimension
of X ′ in terms of the dimension of X and R, [Sta21, Tag 0AFF]; note
that this also gives a bound for the dimension of the local rings of X ′,
[Sta21, Tag 04MU]. Excellence of X ′ follows from [Sta21, Tag 07QW].

To see that X ′ is regular, let x ∈ X ′ be a point. Let y ∈ Spec(R)
be the image of the point x under the projection X ′ → Spec(R), and
write my ⊂ OSpec(R),y for the maximal ideal of the local ring at y.
The induced ring map OSpec(R),y → OX′,x is both local and, since X is
smooth, flat. Since there exists a canonical isomorphism

OX′,x/myOX′,x
∼= OX′

y ,x,

between the fiber over y of the local ring of x in X ′ and the local
ring of x in the fiber over y, and since X is smooth, the local ring
OX′

y ,x
∼= OX′,x/myOX′,x is regular. As OSpec(R),y is also regular, it

follows from [Mat86, Theorem 23.7] that OX′,x is regular too.
In particular, the Gersten conjecture for Quillen’s K-theory [Pan03,

Theorem A], and the Gersten conjecture for Milnor K-theory [Ker09,
Theorem 7.1] when k has enough elements, are both known to hold for
the local rings of X ′.

Lemma 5.12. Fix an algebraic extension k/Q and let π : X → k be a
smooth, proper, and geometrically connected scheme. Let E be a finite
rank locally free sheaf on X and φ : P(E)→ k be the structure map of
the associated projective bundle. Then R2π∗KM2,X is pro-representable

(resp. effectively pro-representable) if and only if R2φ∗KM2,P(E) is pro-

representable (resp. effectively pro-representable).
The above statement also holds replacing all Zariski sheaves with

their étale sheafifications.

Proof. It suffices to work only over the base field k, noting that k/Q is
arbitrary. Note that R2π∗KM2,X is pro-representable if and only if

(29) H2(X,OX) = H3(X,OX) = 0

by [Blo75, Theorem (0.2)] and Lemma 5.4. Now (29) holds if and only
if there is the vanishing of cohomology

H2(P(E),OP(E)) = H3(P(E),OP(E)) = 0

https://stacks.math.columbia.edu/tag/0385
https://stacks.math.columbia.edu/tag/0AFF
https://stacks.math.columbia.edu/tag/04MU
https://stacks.math.columbia.edu/tag/07QW
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which holds if and only if R2φ∗KM2,P(E) is pro-representable by [Blo75,

Theorem (0.2)] and Lemma 5.4 again. We note that the same is true
for the étale sheafifications of these functors.

Let R = k[[t1, ..., tr]] be a power series ring in finitely many variables
with maximal ideal mR. Set S = Spec(R) and St = Spec(R/mt

R).
Then, by Remark 5.11, the Gersten conjecture holds for the local rings
of both XS and P(E)S so that

H2(XS,KM2,XS
) ∼= CH2(XS) and H2(P(E)S,KM2,P(E)S) ∼= CH2(P(E)S)

where for any equidimensional k-scheme Y we write CH2(Y ) for the
group of codimension-2 cycles on Y modulo rational equivalence.

Now let 0k ∈ R2π∗KM2,X(k) be the group identity and suppose that

Def0k(R2π∗KM2,X) is pro-representable. Then by [Blo75, Theorem (0.2)],

the functor Def0k(R2π∗KM2,X) is isomorphic to the functor assigning to

an artinian local k-algebra (A,mA) the k-vector space H2(X,Ω1
X)⊗kmA.

Thus there is a commutative diagram as below.

0 Defc0k(R2π∗KM2,X)(R) CH2(XS) CH2(X) 0

0 H2(X,Ω1
X)⊗k mR lim←−t H2(XSt ,KM2,XSt

) H2(X,KM2,X) 0

Here the surjectivity of the bottom row follows from [Sta21, Tag 0598].
Similarly, there is a commutative diagram for P(E) as so:

0 Defc0k(R2φ∗KM2,P(E))(R) CH2(P(E)S) CH2(P(E)) 0

0 H2(P(E),Ω1
P(E))⊗k mR lim←−t H2(P(E)St ,KM2,P(E)St

) H2(P(E),KM2,P(E)) 0.

The bottom rows in the diagrams above are canonically right-split
by the pull-back along the structure maps for X and P(E) respectively.
Using the projection map P(E) → X, the two diagrams above can be
compared (via pull-back) and this comparison respects these splittings.
If the rank of E is 1, then the comparison is an isomorphism everywhere.
Otherwise, if the rank of E is greater than 1, then there is a diagram
of corresponding cokernels:

0 Defc0k(PicX/k,(Zar))(R) Pic(XS)⊕ A Pic(X)⊕ A 0

0 H1(X,OX)⊗k mR lim←−t H1(XSt ,KM1,XSt
) H1(X,KM1,X) 0.

https://stacks.math.columbia.edu/tag/0598
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Here the nonzero column on the right (and the middle object in the
top row) can be identified with use of the projective bundle formula
(and we have A = 0 if rank(E) = 2 and A = Z if rank(E) ≥ 3); the
identification of the top-left object follows from this. The identification
of the bottom-left object seems to be well-known, and the middle term
in the bottom row can be identified using these facts together with the
splittings of the bottom rows of the two previous diagrams.

Altogether, this gives a commutative ladder with exact rows:

0 Defc0k(R2π∗KM2,X)(R) Defc0k(R2φ∗KM2,P(E))(R) Defc0k(PicX/k,(Zar))(R) 0

0 H2(X,Ω1
X)⊗k mR H2(P(E),Ω1

P(E))⊗k mR H1(X,OX)⊗k mR 0.

Here the rightmost vertical arrow is an isomorphism by Grothendieck’s
existence theorem, cf. [Sta21, Tag 089N]. Therefore, if either the left
or the middle vertical arrow is a surjection, then the other is as well.
By varying the power series ring R, it follows from Lemma 5.2 and
Lemma 5.5 that R2π∗KM2,X is effectively pro-representable if and only

if R2φ∗KM2,P(E) is effectively pro-representable. The analogous theorem
for the étale higher direct image functors is proved similarly by noting
that, in each of the above diagrams, all splittings descend to Galois
invariants. □

Remark 5.13. Lemma 5.12 has the following natural generalization.
Assume that Rkπ∗KMk,X is pro-representable for all integers k with
0 ≤ k ≤ n (resp. that these functors are effectively pro-representable).
Then the functor Rnφ∗KMn,P(E) is pro-representable (resp. effectively pro-

representable). Conversely, if for an integer n ≥ 0 each of the functors
Rnφ∗KMn,P(E) and Rkπ∗KMk,X are pro-representable (resp. effectively pro-

representable) for all integers k with 0 ≤ k < n, then Rnπ∗KMn,X is
pro-representable (resp. effectively pro-representable). There is also a
natural étale version of this generalization.

For n = 0 and n = 1, the above statement is true and the proof
follows lines similar to the proof of Lemma 5.12. When n = 2, this
statement is the content of Lemma 5.12. For n ≥ 3, the proof of this
statement seems out of reach at the moment.

Lemma 5.14. Fix an algebraic extension k/Q and let π : X → k be
a smooth, proper, and geometrically connected scheme. Let Z ⊂ X be
a smooth subscheme of X and let φ : BlZ(X) → k be the structure
map of the blow-up of X along Z. Then R2π∗KM2,X is pro-representable

https://stacks.math.columbia.edu/tag/089N
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(resp. effectively pro-representable) if and only if R2φ∗KM2,BlZ(X) is pro-

representable (resp. effectively pro-representable).
The above statement also holds replacing all Zariski sheaves with

their étale sheafifications.

Proof. As in the proof of Lemma 5.12, R2π∗KM2,X is pro-representable
if and only if

(30) H2(X,OX) = H3(X,OX) = 0

by [Blo75, Theorem (0.2)] and Lemma 5.4. Now (30) holds if and only
if there is the vanishing of cohomology

H2(BlZ(X),OBlZ(X)) = H3(BlZ(X),OBlZ(X)) = 0

(see e.g. [CR11] or [RYYY22]) which holds if and only if R2φ∗KM2,BlZ(X)

is pro-representable by [Blo75, Theorem (0.2)] and Lemma 5.4 again.
We note that the same is true for the étale sheafifications.

For the effectivity statement of the lemma, it suffices to assume
codimX(Z) ≥ 2. As before, let R = k[[t1, ..., tr]] be a power series ring
in finitely many variables with maximal ideal mR. Set S = Spec(R).
We write NZ/X for the normal sheaf on Z of the inclusion Z ⊂ X and
we write Θ : P(NZ/X) → X for the associated projective bundle map.
There’s an isomorphism Pic(P(NZ/X)) ∼= Θ∗Pic(Z)⊕Zc1(OP(NZ/X)(1)).

By the blow-up formula for regular embeddings [Ful98, Proposition 6.7
(e)] there is an exact sequence

0→ CH2(X)→ CH2(BlZ(X))→ Pic(P(NZ/X))/A→ 0

where A = 0 if codimX(Z) > 2 or, if codimX(Z) = 2, then A is the
infinite cyclic subgroup generated by Θ∗c1(NZ/X) + c1(OP(NZ/X)(1)).

Since Remark 5.11 applies to the triple (XS, ZS,BlZS
(XS)) and, due to

[Sta21, Tag 0E9J], the blow-up formula also provides an exact sequence

0→ CH2(XS)→ CH2(BlZS
(XS))→ Pic(P(NZS/XS

))/AS → 0

with AS characterized by the codimension of Z ⊂ X similarly.
If codimX(Z) = 2, then pulling back induces isomorphisms

Pic(Z) ∼= Pic(P(NZ/X))/A and Pic(ZS) ∼= Pic(P(NZS/XS
))/AS.

Now, regardless of the codimension of Z in X, the above sequences on
Chow groups produce an exact sequence

0 Defc0k(R2π∗KM2,X)(R) Defc0k(R2φ∗KM2,BlZ(X))(R) Defc0k(PicZ/k,(Zar))(R) 0.

https://stacks.math.columbia.edu/tag/0E9J
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If either ofR2π∗KM2,X orR2φ∗KM2,BlZ(X) are pro-representable, then pulling

back along the map BlZ(X)→ X induces an exact commutative ladder

0 Defc0k(R2π∗KM2,X)(R) Defc0k(R2φ∗KM2,BlZ(X))(R) Defc0k(PicZ/k,(Zar))(R) 0

0 H2(X,Ω1
X)⊗k mR H2(BlZ(X),Ω1

BlZ(X))⊗k mR H1(Z,OZ)⊗k mR 0.

The rightmost vertical arrow is an isomorphism. Hence, if either of the
left or the middle vertical arrows were surjective, then the other would
be as well. This allows us to conclude as before. □

Theorem 5.15. Fix an algebraic extension k/Q and let πX : X → k
and πY : Y → k be two smooth, proper, and geometrically connected
k-schemes. Suppose that X and Y are stably birational over k.

Then (R2πX∗KM2,X)τ is pro-representable (respectively effectively pro-

representable) if and only if (R2πY ∗KM2,Y )τ is pro-representable (resp.
effectively pro-representable) for either τ = Zar, ét.

Proof. This follows immediately from Lemma 5.12, Lemma 5.14, and
the Weak Factorization theorem over k, [W lod09, Theorem 0.0.1 (1)].
Namely, suppose (R2πX∗KM2,X)τ is either pro-representable or effectively
pro-representable and let φX : X × Pr → k and φY : Y × Ps → k be
birationally equivalent k-schemes for some r, s ≥ 0.

Then the higher push forward functor (R2φX∗KM2,X×Pr)τ is either pro-
representable or effectively pro-representable because of Lemma 5.12.
Any birational equivalence between the two schemes X×Pr and Y ×Ps
can be factored into a sequence of blow-ups and blow-downs, by the
Weak Factorization theorem, so that this implies (R2φY ∗KM2,Y×Ps)τ is
then pro-representable or effectively pro-representable by Lemma 5.14.
We can then conclude that (R2πY ∗KM2,Y )τ is also pro-representable or
effectively pro-representable by use of Lemma 5.12 again. □

Let F : (Sch/k)op → Set be an effectively pro-representable functor.
Let F/k be a finite field extension and let s : Spec(F )→ Spec(k) be the
corresponding F -point. Then for any ξ0 ∈ F|s(F ), there is a complete

local F -algebra (R,mR) so that the functor D̂efξ0(F|s) is representable
by the F -algebra R. Moreover, the universal formal deformation of ξ0
corresponding to the identity of R is in the image of the canonical map

Defcξ0(F|s)(R)→ D̂efξ0(F|s)(R)

described in (28).

For any complete local F -algebra (A,mA) of the category ÂrtF , we
say that a formal deformation ξA of ξ0 over A is algebraizable if there
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exists a finite type F -scheme X, a closed point x ∈ X with k(x) ∼= F ,

an element ξ ∈ F|s(X), and an isomorphism ÔX,x ∼= A between the
completion of OX,x with respect to the maximal ideal mx ⊂ OX,x and
A such that ξ induces ξA, i.e. the image of ξ under the map

F|s(X)→ F|s(Spec(OX,x/mt
x))

coincides with the image of ξA for all t ≥ 1.
We say that the functor F is algebraizable if for any triple (F, s, ξ0)

as above, the universal formal deformation of ξ0 corresponding to the
identity is algebraizable. As a consequence of Artin’s Algebraization
Theorem [Art69, Theorem 1.6], a sufficient condition for an effectively
pro-representable functor F to be algebraizable is that F is locally of
finite presentation. Thus, as an immediate corollary to Theorem 5.15,
Proposition 3.1, and Artin’s theorem we get:

Corollary 5.16. Fix an algebraic extension k/Q and let πX : X → k
and πY : Y → k be two smooth, proper, and geometrically connected
k-schemes. Suppose that X and Y are stably birational over k.

Then, for either τ = Zar or ét, (R2πX∗KM2,X)τ is algebraizable if and

only if (R2πY ∗KM2,Y )τ is algebraizable. □

Example 5.17. In [BW19], Benoist and Wittenberg construct a group
functor CH2

X/k,fppf , defined on the category of quasi-compact and quasi-
separated k-schemes, for any smooth, proper, geometrically connected
threefold X over a field k such that the map deg : CH0(XF ) → Z is
an isomorphism for every field extension F/k. The functor CH2

X/k,fppf

is thought of as an analogue of the Picard functor for codimension
2-cycles and admits an isomorphism

CH2
X/k,fppf (k) ∼= CH2(Xk)

for any algebraic closure k/k. The authors are able to show that for
geometrically rational X, the group functor CH2

X/k,fppf is representable

by a smooth group scheme CH2
X/k over k.

While Theorem 5.15 and Corollary 5.16 don’t show representability,
they are close in the sense that they can be used to verify conditions
[0], [1] and [2] of Artin’s representability criterion [Art69, Theorem 4.1]
for the functors (R2π∗KM2,X)ét in a handful of new cases. (To fully prove

that (R2π∗KM2,X)ét is representable by a group k-scheme, there is still
condition [3], on relative representability, that needs to be checked.)

Compared to Benoist and Wittenberg’s construction, our results can
also be applied to schemes which do not have a universally trivial Chow
group of dimension 0-cycles. For example, if S is an Enriques surface
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defined over Q, then it follows from Theorem 5.15 that (R2π∗KM2,X)ét is

algebraizable for the associated threefold product π : X = S×P1 → Q.
However, by Theorem [ACTP17, Theorem 1.4] and the remarks under
[ACTP17, Proposition 1.8], the Chow group of dimension 0-cycles on
X is not universally trivial.
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