THE GENERA OF SMOOTH CURVES IN A PROJECTIVE VARIETY

EOIN MACKALL

Abstract

In this note we study the set $\Sigma_{g}(X)$ of nonnegative integers that appear as the genera of smooth curves on a smooth and projective variety X. We establish some basic results for these sets including: over an arbitrary field, $\Sigma_{g}(X)$ is infinite if and only if $\operatorname{dim}(X) \geq 2$; over an infinite field, $\Sigma_{g}(X)$ is dense in the set of nonnegative integers whenever X contains a smooth surface S admitting a nonconstant morphism to \mathbb{P}^{1}.

Notation and Conventions. We work over a fixed base field k with algebraic closure \bar{k} unless specified otherwise. In this text a k-variety is a geometrically integral separated scheme of finite type over k. A curve is a proper k-variety of dimension one. A surface is a proper k-variety of dimension two.

1. Introduction

A natural question in algebraic geometry is the following one:
Question 1.1. What smooth curves are contained in a given smooth and projective variety X ?
For example, a classical result in algebraic geometry is the fact that, when the base field k is infinite, every smooth curve C defined over k can be embedded in \mathbb{P}^{3}. This result is even sharp in the sense that there are strict restrictions on the curves that admit embeddings into \mathbb{P}^{2}; for example, every curve $C \subset \mathbb{P}^{2}$ has genus $g(C)$ determined by the degree $\operatorname{deg}(C)$ of C under the embedding $C \subset \mathbb{P}^{2}$ by the degree-genus formula,

$$
g(C)=\operatorname{dim} \mathrm{H}^{1}\left(C, \mathcal{O}_{C}\right)=\frac{1}{2}(\operatorname{deg}(C)-1)(\operatorname{deg}(C)-2) .
$$

This observation partially led the author to the following definition.
Definition 1.2. Let X be a smooth and projective variety. Define $\Sigma_{g}(X) \subset \mathbb{N} \cup\{0\}$ to be the set of nonnegative integers n for which there exists a smooth curve $C \subset X$ with genus $\mathrm{g}(C)=n$.

In this text, we study the sets $\Sigma_{g}(X)$ for arbitrary and varying smooth and projective varieties X. This can naturally be seen as a weak version of Question 1.1 since the containment $g(C) \in \Sigma_{g}(X)$ is an obviously necessary requirement for a variety X to contain a smooth curve C.

In our study, we've been guided by the following three questions. First, for an arbitrary smooth and projective variety X, what does the set $\Sigma_{g}(X)$ typically look like? Second, which properties of a smooth and projective variety X determine the structure of $\Sigma_{g}(X)$? Third, what is the coarsest invariant between smooth and projective varieties X and Y that implies $\Sigma_{g}(X)=\Sigma_{g}(Y)$? The first two of these three questions are partially answered by the following theorems.

Theorem 1.3. Let X be a smooth and projective variety with $\operatorname{dim}(X) \geq 2$. Then $\Sigma_{g}(X)$ is an infinite set. Moreover, if one orders the elements of $\Sigma_{g}(X)$,

$$
\Sigma_{g}(X)=\left\{n_{1}, n_{2}, n_{3}, \ldots\right\}
$$

Date: December 12, 2019.
2010 Mathematics Subject Classification. 14H99; 14J99.
Key words and phrases. Smooth curves; genera.
with $n_{i}<n_{i+1}$ for all $i \geq 1$, then there exist constants $\alpha, \beta \geq 0$ and an inequality

$$
n_{i+1} \leq \alpha(i+1)^{2}+\beta
$$

for all sufficiently large $i \gg 1$.
Theorem 1.4. Assume that the base field k is infinite and let X be a smooth and projective variety over k with $\operatorname{dim}(X) \geq 2$. Order the elements of $\Sigma_{g}(X)$ as an increasing set like

$$
\Sigma_{g}(X)=\left\{n_{1}, n_{2}, \ldots\right\}
$$

with $n_{i+1}>n_{i}$ for all $i \geq 1$.
Suppose that X contains a smooth surface S that admits a nonconstant morphism to a curve C. Then there exist constants $\alpha, \beta \geq 0$ and an inequality

$$
n_{i+1} \leq \alpha(i+1)+\beta
$$

for all $i \geq 1$.
We establish Theorem 1.3 in Section 2. This theorem essentially characterizes the structure of $\Sigma_{g}(X)$ for an arbitrary variety X; in particular, $\Sigma_{g}(X)$ is finite if and only if $\operatorname{dim}(X) \geq 2$ and, the length of gaps between genera of smooth curves on X can grow at most linearly. In Section 2 we also collect a number of examples to illustrate the behavior of $\Sigma_{g}(X)$ for varying X.

In Section 3, we restrict our attention to the case of surfaces. Here we prove Theorem 1.4 that says: if a smooth and projective variety X contains a smooth surface S that admits a nonconstant morphism to a curve, then the length of gaps between genera of smooth curves on X is bounded by a constant. Unfortunately, our proof relies on implementing Bertini's theorem simultaneously under an infinite collection of embeddings which is why we assume in Theorem 1.4 that the base field k is infinite. We also prove in this section Proposition 3.2, which shows that $\Sigma_{g}(X)$ has zero density in the set of nonnegative integers for a surface X having Picard rank one, which can be seen as a partial converse to Theorem 1.4.

The last of our questions remains unanswered, even partially, in this note. As an invariant, an obvious observation is that $\Sigma_{g}(X)$ only depends on the isomorphism class of X, see Remark 2.1. However, it's not clear to what extent this can be refined; we observe in Example 2.3 that there are birational smooth and projective varieties X and Y with differing sets $\Sigma_{g}(X) \neq \Sigma_{g}(Y)$. One possibility, that isn't pursued here, is to ask whether the sets $\Sigma_{g}(X)$ depend only on the \mathbb{A}^{1}-weak equivalence class of X.

2. Properties of $\Sigma_{g}(X)$

Throughout this section we fix an arbitrary smooth and projective variety X and we write $\Sigma_{g}(X) \subset \mathbb{N} \cup\{0\}$ for the set of integers that are genera of smooth curves on X (see Definition 1.2).

Remark 2.1. Given another smooth and projective variety Y there is the obvious relation that a closed immersion $X \subset Y$ induces an inclusion $\Sigma_{g}(X) \subset \Sigma_{g}(Y)$.

Example 2.2. If $X=\operatorname{Spec}(k)$ then $\Sigma_{g}(X)=\emptyset$. If X is a curve, then $\Sigma_{g}(X)=\{g(X)\}$ is just the genus of X.

The following proof shows that the set $\Sigma_{g}(X)$ is infinite for every such X outside of those considered in Example 2.2.
Proof of Theorem 1.3. Let X be a smooth and projective variety of dimension $\operatorname{dim}(X) \geq 2$ defined over our base field k. By Bertini's theorem, either [Jou83, Théorème 6.10 et Corollaire 6.11] if k is an infinite field or [Poo04, Theorem 1.1 and Proposition 2.7] if k is finite, the variety X contains a smooth and projective variety S of dimension $\operatorname{dim}(S)=2$. It suffices then by Remark 2.1 to prove the result when $X=S$.

We're going to prove both parts of Theorem 1.3 simultaneously by showing that $\Sigma_{g}(X)$ contains all values $f(n)$, for all integers n larger than some fixed integer, of a numerical polynomial f of degree 2. To do this, we first remark that, for our surface X and a chosen embedding $X \subset \mathbb{P}^{m}$, there is an integer n_{0} so that for all $n \geq n_{0}$ one can find a hypersurface $H_{n} \subset \mathbb{P}^{m}$ of degree $\operatorname{deg}\left(H_{n}\right)=n$ with intersection $X \cap H_{n}$ linearly equivalent to a smooth and geometrically integral curve C_{n} (again this follows from either [Jou83, Théorème 6.10 et Corollaire 6.11] if k is an infinite field or [Poo04, Theorem 1.1 and Proposition 2.7] if k is finite).

For any $n \geq n_{0}$ we have an exact sequence

$$
0 \rightarrow \mathcal{O}_{X}(-n) \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{C_{n}} \rightarrow 0
$$

which shows that

$$
\chi\left(C_{n}, \mathcal{O}_{C_{n}}\right)=\chi\left(X, \mathcal{O}_{X}\right)-\chi\left(X, \mathcal{O}_{X}(-n)\right)
$$

Similarly one can get an exact sequence by twisting

$$
0 \rightarrow \mathcal{O}_{X}(-n) \rightarrow \mathcal{O}_{X}\left(n_{0}-n\right) \rightarrow \mathcal{O}_{C_{n_{0}}}\left(n_{0}-n\right) \rightarrow 0
$$

Substitution then shows that

$$
\begin{aligned}
1-g\left(C_{n}\right)=\chi\left(C_{n}, \mathcal{O}_{C_{n}}\right) & =\chi\left(X, \mathcal{O}_{X}\right)-\chi\left(X, \mathcal{O}_{X}(-n)\right) \\
& =\chi\left(X, \mathcal{O}_{X}\right)-\chi\left(X, \mathcal{O}_{X}\left(n_{0}-n\right)\right)+\chi\left(C_{n_{0}}, \mathcal{O}_{C_{n_{0}}}\left(n_{0}-n\right)\right)
\end{aligned}
$$

Finally, rearranging the above shows that the genus $g\left(C_{n}\right)$ can be written

$$
g\left(C_{n}\right)=\chi\left(X, \mathcal{O}_{X}\left(n_{0}-n\right)\right)-\chi\left(C_{n_{0}}, \mathcal{O}_{C_{n_{0}}}\left(n_{0}-n\right)\right)-\chi\left(X, \mathcal{O}_{X}\right)+1
$$

which is a numerical polynomial in the variable n of degree 2 as claimed.
In some explicit cases for varieties X one can determine the exact values of $\Sigma_{g}(X)$.
Example 2.3. If $X=\mathbb{P}^{2}$, then

$$
\Sigma_{g}(X)=\{0,1,3,6,10, \ldots\}
$$

is the set of all integers n that can be expressed as $n=\frac{1}{2}(d-1)(d-2)$ for some integer $d \geq 1$ by the degree-genus formula [Har77, Chapter V Example 1.5.1]. (For k finite, one can compare with [Poo04, Section 3.5 Remark]).

If $X=\mathbb{P}^{3}$ and k is infinite, then

$$
\Sigma_{g}(X)=\{0,1,2, . .\}=\mathbb{N} \cup\{0\}
$$

since X contains every smooth curve C defined over k.
If $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ and k is infinite then

$$
\Sigma_{g}(X)=\{0,1,2, \ldots\}=\mathbb{N} \cup\{0\}
$$

since X contains curves of arbitrary genus by the bidgree-genus formula (see [Har77, Chapter V Example 1.5.2]). Compared to $Y=\mathbb{P}^{2}$, this shows that $\Sigma_{g}(X) \neq \Sigma_{g}(Y)$ so that this set is not a birational invariant (cf. Corollary 3.4 below).

If $X \subset \mathbb{P}^{3}$ is a smooth cubic surface defined over an algebraically closed field k, then

$$
\Sigma_{g}(X)=\mathbb{N} \cup\{0\}
$$

by [Har77, Chapter V Ex. 4.9].
Example 2.4. Let $X=C_{1} \times \cdots \times C_{r}$ be the product of a finite number of smooth and projective curves C_{1}, \ldots, C_{r}. Then for any element $n \in \Sigma_{g}(X)$ one has $n \geq \min \left\{g\left(C_{i}\right)\right\}$. If $g\left(C_{i}\right)=0$ for some i, then this doesn't say anything so assume $g\left(C_{i}\right)>0$ for each i. To see this claim, label the projections $\pi_{i}: X \rightarrow C_{i}$. One can observe that if $D \subset X$ is a smooth and projective curve, then
$\pi_{i}(D)$ is dominant, hence surjective, for some index $1 \leq i \leq r$. If the base field k has characteristic zero, then the morphism $D \rightarrow C_{i}$ gives an inequality

$$
2(g(D)-1)=2 \operatorname{deg}\left(\left.\pi_{i}\right|_{D}\right)\left(g\left(C_{i}\right)-1\right)+R \geq 2\left(g\left(C_{i}\right)-1\right)
$$

where the first equality is just the Riemann-Hurwitz formula [Sta19, Tag 0C1D] and the claim follows. If the base field k has characteristic $p>0$, then the morphism $D \rightarrow C_{i}$ may factor into morphisms [Sta19, Tag 0CD2]

$$
D \rightarrow D^{\left(p^{n}\right)} \rightarrow C_{i}
$$

where $g(D)=g\left(D^{\left(p^{n}\right)}\right)$ by [Sta19, Tag 0CD0] and where the same Riemann-Hurwitz formula argument now gives $g\left(D^{\left(p^{n}\right)}\right) \geq g\left(C_{i}\right)$.

When working over an arbitrary field, there are some arithmetic obstructions to the possible values that can occur among the set $\Sigma_{g}(X)$. Recall that the index of X is the greatest common divisor of the degrees of the residue fields of closed points on X,

$$
\operatorname{ind}(X)=\{\operatorname{gcd}([k(x): k]): x \in X \text { is a closed point }\} .
$$

If $C \subset X$ is a smooth curve then one has the divisibility relations

$$
\operatorname{ind}(X)|\operatorname{ind}(C)| \operatorname{deg}\left(\Omega_{C}\right)=2 g(C)-2 .
$$

Example 2.5. If $X=\mathbf{S B}(A)$ is the Severi-Brauer variety associated to a division algebra A of degree $\operatorname{deg}(A)=3$, then X is a nontrivial twisted form of \mathbb{P}^{2} with $\operatorname{ind}(X)=3$. In this case

$$
\Sigma_{g}(X)=\{1,10,28,55,91, \ldots\}
$$

is the set of all integers n that can be written $n=\frac{1}{2}(3 d-1)(3 d-2)$ for some integer $d \geq 1$.
Example 2.6. If $X=\mathbf{S B}\left(Q_{1} \otimes Q_{2}\right)$ is the Severi-Brauer variety associated to a product of Quaternion algebras $Q_{1} \neq Q_{2}$ then

$$
\Sigma_{g}(X)=\{1,3,5,7,9, \ldots\}
$$

is the set of all odd positive integers. To see this, note that since $\operatorname{ind}(X)=4$ this is as large as the set $\Sigma_{g}(X)$ can be. To see that all of these values actually do occur, one observes that X contains the variety $Y=\mathbf{S B}\left(Q_{1}\right) \times \mathbf{S B}\left(Q_{2}\right)$ as a twisted Segre subvariety. By applying Bertini's theorem to the very ample classes in

$$
\operatorname{Pic}(Y)=2 \mathbb{Z} \times 2 \mathbb{Z} \subset \mathbb{Z} \times \mathbb{Z}=\operatorname{Pic}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)
$$

and using the bidgree-genus formula it follows that

$$
\Sigma_{g}(Y)=\{1,3,5, \ldots\}
$$

is the set of all integers n that can be written $n=\left(2 d_{1}-1\right)\left(2 d_{2}-1\right)$ for any pair of integers $d_{1}, d_{2} \geq 1$.

Example 2.7. This example shows that one can't necessarily deduce the set $\Sigma_{g}(X)$ from the set $\Sigma_{g}\left(X_{\bar{k}}\right)$ of smooth \bar{k}-curves lying in $X_{\bar{k}}$ for an algebraic closure $\bar{k} \supset k$.

Let $X=\operatorname{Res}_{\mathbb{C} / \mathbb{R}}\left(\mathbb{P}_{\mathbb{C}}^{1}\right)$ be the Weil restriction. Then $X_{\mathbb{C}}=\mathbb{P}^{1} \times \mathbb{P}^{1}$ so that $\Sigma_{g}\left(X_{\mathbb{C}}\right)=\mathbb{N} \cup\{0\}$ by Example 2.3. But, since $\operatorname{Pic}(X)=\mathbb{Z}$ the set $\Sigma_{g}(X)$ has zero density in $\mathbb{N} \cup\{0\}$ by Proposition 3.2.

On the other hand, if $Y=\mathbb{P}_{\mathbb{R}}^{1} \times \mathbf{S B}(Q)$ for the unique nontrivial division algebra Q over \mathbb{R} then $Y_{\mathbb{C}}=\mathbb{P}^{1} \times \mathbb{P}^{1}$ and a similar analysis to Example 2.6 using the inclusion

$$
\operatorname{Pic}(Y)=\mathbb{Z} \times 2 \mathbb{Z} \subset \mathbb{Z} \times \mathbb{Z}=\operatorname{Pic}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)
$$

shows that $\Sigma_{g}(Y)=\mathbb{N} \cup\{0\}$.
In this example, $\operatorname{ind}(X)=1$ and $\operatorname{ind}(Y)=2$.

3. Surfaces

Throughout this section we fix a smooth (hence projective) surface S. The main theorem of this section is Theorem 1.4, that shows if X is a smooth and projective variety defined over an infinite field k, containing S, and if S admits a morphism to a curve C then $\Sigma_{g}(X)$ grows linearly. After giving the proof of this theorem, we deduce some of its consequences. We'll need the following lemma.

Lemma 3.1. Let S be a smooth and projective surface defined over an infinite field k. Assume that there exists a globally generated line bundle $\mathcal{L}=\mathcal{O}(D)$ on S, corresponding to an effective divisor D on X, that has zero self intersection, i.e. $D^{2}=0$. Then for any very ample smooth curve $C \subset S$ and for any integer $n \geq 1$ there is a very ample smooth curve C_{n} linearly equivalent to $C+n D$ with genus

$$
g\left(C_{n}\right)=\frac{1}{2} n D(2 C+K)+\frac{K C+C^{2}+2}{2}
$$

where K is the canonical divisor on S.
Proof. Since D is globally generated, $C+n D$ is very ample for all $n \geq 1$. By Bertini's theorem [Jou83, Théorème 6.10 et Corollaire 6.11] one can find a smooth and geometrically integral curve C_{n} linearly equivalent to $C+n D$. Applying the adjunction formula to C_{n} and computing the degree of the canonical bundle on C_{n} (noting $D^{2}=0$) gives the desired formula for the genus $g\left(C_{n}\right)$.

Proof of Theorem 1.4. To prove this theorem, we're going to show that $\Sigma_{g}(X)$ contains the set of integers of the form $a n+b$ for all $n \geq 1$ and for some constants a, b (in this case, we won't necessarily find that $a, b \geq 0$ which is why we write a, b here and not α, β).

It suffices by Remark 2.1 to consider only the case $X=S$. We're assuming then that S admits a nonconstant morphism $f: S \rightarrow C$ to a curve C and, since C is proper, it suffices to assume $C=\mathbb{P}^{1}$. In this case, S has a globally generated line bundle $\mathcal{O}(D)=f^{*} \mathcal{O}(1)$ corresponding to the effective divisor D that is the fiber of f over any rational point of C; in particular $D^{2}=0$.

Thus Lemma 3.1 applies to give a sequence of elements in $\Sigma_{g}(S)$ depending on an integer $n \geq 1$ that grows linearly in n which concludes the proof.

As a sort of converse to Theorem 1.4, we give the following proposition (note there are no restrictions on the base field).

Proposition 3.2. Assume that S is a smooth surface of Picard rank one. Label the elements of

$$
\Sigma_{g}(S)=\left\{n_{1}, n_{2}, \ldots\right\}
$$

so that $n_{i+1}>n_{i}$ for all $i \geq 1$. Then for every pair of constants $\alpha, \beta \geq 0$ there is an index $j_{0}=j_{0}(\alpha, \beta)$ depending on α, β so that

$$
n_{j} \geq \alpha j+\beta
$$

for every $j \geq j_{0}$. Moreover, the set $\Sigma_{g}(S)$ has zero density in $\mathbb{N} \cup\{0\}$.
Proof. Since S has Picard rank one, any smooth and projective curve $C \subset S$ is linearly equivalent to a multiple $C=n D$ of an ample divisor D. Using the adjunction formula it follows that the genus $g(C)$ equals

$$
g(C)=\frac{1}{2}\left(n^{2} D^{2}+n K D\right)+1
$$

where K is the canonical class on S. Since D is ample, we have $D^{2}>0$. It follows that even if every positive multiple of D in the Picard group was represented by a smooth curve, then one could still find such an index j_{0} depending on the two constants $\alpha, \beta \geq 0$ that has the desired properties.

To see the claim about the density of $\Sigma_{g}(S)$, we recall that the density $\mu\left(\Sigma_{g}(S)\right)$ of $\Sigma_{g}(S)$ in $\mathbb{N} \cup\{0\}$ is defined as the limit

$$
\mu\left(\Sigma_{g}(S)\right)=\lim _{n \rightarrow \infty} \frac{\#\left(\Sigma_{g}(S) \cap\{0, \ldots, n\}\right)}{n+1} .
$$

The previous paragraph then shows

$$
\begin{aligned}
0 \leq \mu\left(\Sigma_{g}(S)\right) & =\lim _{n \rightarrow \infty} \frac{\#\left(\Sigma_{g}(S) \cap\{0, \ldots, n\}\right)}{n+1} \\
& =\lim _{j \rightarrow \infty} \frac{j}{n_{j}+1} \\
& \leq \lim _{j \rightarrow \infty} \frac{j}{(1 / 2)\left(j^{2} D^{2}+j(K D)\right)+2}=0
\end{aligned}
$$

as desired.
Example 3.3. Proposition 3.2 applies to \mathbb{P}^{2}, some simple abelian surfaces, and some K 3 surfaces among others examples.

Another immediate consequence of Theorem 1.4 is the following corollary that says given a smooth surface S, one can blowup at a subvariety to produce (sometimes many) more curves.
Corollary 3.4. For any smooth surface S, there is a smooth surface \tilde{S} and a surjection $\pi: \tilde{S} \rightarrow S$ satisfying the properties:
(1) π restricts to an isomorphism on a dense open $U \subset \tilde{S}$
(2) there is a nonconstant morphism $\tilde{S} \rightarrow \mathbb{P}^{1}$.

In particular if k is infinite, then \tilde{S} satisfies the conditions of Theorem 1.4.

References

[Har77] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977, Graduate Texts in Mathematics, No. 52. MR 0463157
[Jou83] J.-P. Jouanolou, Théorèmes de Bertini et applications, Progress in Mathematics, vol. 42, Birkhäuser Boston, Inc., Boston, MA, 1983. MR 725671
[Poo04] B. Poonen, Bertini theorems over finite fields, Ann. of Math. (2) 160 (2004), no. 3, 1099-1127. MR 2144974
[Sta19] The Stacks project authors, The stacks project, https://stacks.math.columbia.edu, 2019.
Email address: eoinmackall at gmail.com
$U R L$: www.eoinmackall. com

