
THE GENERA OF SMOOTH CURVES IN A PROJECTIVE VARIETY

EOIN MACKALL

Abstract. In this note we study the set Σg(X) of nonnegative integers that appear as the genera
of smooth curves on a smooth and projective variety X. We establish some basic results for these
sets including: over an arbitrary field, Σg(X) is infinite if and only if dim(X) ≥ 2; over an infinite
field, Σg(X) is dense in the set of nonnegative integers whenever X contains a smooth surface S
admitting a nonconstant morphism to P1.

Notation and Conventions. We work over a fixed base field k with algebraic closure k unless
specified otherwise. In this text a k-variety is a geometrically integral separated scheme of finite
type over k. A curve is a proper k-variety of dimension one. A surface is a proper k-variety of
dimension two.

1. Introduction

A natural question in algebraic geometry is the following one:

Question 1.1. What smooth curves are contained in a given smooth and projective variety X?

For example, a classical result in algebraic geometry is the fact that, when the base field k is
infinite, every smooth curve C defined over k can be embedded in P3. This result is even sharp
in the sense that there are strict restrictions on the curves that admit embeddings into P2; for
example, every curve C ⊂ P2 has genus g(C) determined by the degree deg(C) of C under the
embedding C ⊂ P2 by the degree-genus formula,

g(C) = dim H1(C,OC) =
1

2
(deg(C)− 1)(deg(C)− 2).

This observation partially led the author to the following definition.

Definition 1.2. Let X be a smooth and projective variety. Define Σg(X) ⊂ N ∪ {0} to be the set
of nonnegative integers n for which there exists a smooth curve C ⊂ X with genus g(C) = n.

In this text, we study the sets Σg(X) for arbitrary and varying smooth and projective varieties X.
This can naturally be seen as a weak version of Question 1.1 since the containment g(C) ∈ Σg(X)
is an obviously necessary requirement for a variety X to contain a smooth curve C.

In our study, we’ve been guided by the following three questions. First, for an arbitrary smooth
and projective variety X, what does the set Σg(X) typically look like? Second, which properties of
a smooth and projective variety X determine the structure of Σg(X)? Third, what is the coarsest
invariant between smooth and projective varieties X and Y that implies Σg(X) = Σg(Y )? The
first two of these three questions are partially answered by the following theorems.

Theorem 1.3. Let X be a smooth and projective variety with dim(X) ≥ 2. Then Σg(X) is an
infinite set. Moreover, if one orders the elements of Σg(X),

Σg(X) = {n1, n2, n3, ...}
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with ni < ni+1 for all i ≥ 1, then there exist constants α, β ≥ 0 and an inequality

ni+1 ≤ α(i+ 1)2 + β

for all sufficiently large i >> 1.

Theorem 1.4. Assume that the base field k is infinite and let X be a smooth and projective variety
over k with dim(X) ≥ 2. Order the elements of Σg(X) as an increasing set like

Σg(X) = {n1, n2, ...}
with ni+1 > ni for all i ≥ 1.

Suppose that X contains a smooth surface S that admits a nonconstant morphism to a curve C.
Then there exist constants α, β ≥ 0 and an inequality

ni+1 ≤ α(i+ 1) + β

for all i ≥ 1.

We establish Theorem 1.3 in Section 2. This theorem essentially characterizes the structure of
Σg(X) for an arbitrary variety X; in particular, Σg(X) is finite if and only if dim(X) ≥ 2 and, the
length of gaps between genera of smooth curves on X can grow at most linearly. In Section 2 we
also collect a number of examples to illustrate the behavior of Σg(X) for varying X.

In Section 3, we restrict our attention to the case of surfaces. Here we prove Theorem 1.4 that
says: if a smooth and projective variety X contains a smooth surface S that admits a nonconstant
morphism to a curve, then the length of gaps between genera of smooth curves on X is bounded
by a constant. Unfortunately, our proof relies on implementing Bertini’s theorem simultaneously
under an infinite collection of embeddings which is why we assume in Theorem 1.4 that the base
field k is infinite. We also prove in this section Proposition 3.2, which shows that Σg(X) has zero
density in the set of nonnegative integers for a surface X having Picard rank one, which can be
seen as a partial converse to Theorem 1.4.

The last of our questions remains unanswered, even partially, in this note. As an invariant, an
obvious observation is that Σg(X) only depends on the isomorphism class of X, see Remark 2.1.
However, it’s not clear to what extent this can be refined; we observe in Example 2.3 that there
are birational smooth and projective varieties X and Y with differing sets Σg(X) 6= Σg(Y ). One
possibility, that isn’t pursued here, is to ask whether the sets Σg(X) depend only on the A1-weak
equivalence class of X.

2. Properties of Σg(X)

Throughout this section we fix an arbitrary smooth and projective variety X and we write
Σg(X) ⊂ N∪{0} for the set of integers that are genera of smooth curves on X (see Definition 1.2).

Remark 2.1. Given another smooth and projective variety Y there is the obvious relation that a
closed immersion X ⊂ Y induces an inclusion Σg(X) ⊂ Σg(Y ).

Example 2.2. If X = Spec(k) then Σg(X) = ∅. If X is a curve, then Σg(X) = {g(X)} is just the
genus of X.

The following proof shows that the set Σg(X) is infinite for every such X outside of those
considered in Example 2.2.

Proof of Theorem 1.3. Let X be a smooth and projective variety of dimension dim(X) ≥ 2 defined
over our base field k. By Bertini’s theorem, either [Jou83, Théorème 6.10 et Corollaire 6.11] if k is
an infinite field or [Poo04, Theorem 1.1 and Proposition 2.7] if k is finite, the variety X contains a
smooth and projective variety S of dimension dim(S) = 2. It suffices then by Remark 2.1 to prove
the result when X = S.
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We’re going to prove both parts of Theorem 1.3 simultaneously by showing that Σg(X) contains
all values f(n), for all integers n larger than some fixed integer, of a numerical polynomial f of
degree 2. To do this, we first remark that, for our surface X and a chosen embedding X ⊂ Pm, there
is an integer n0 so that for all n ≥ n0 one can find a hypersurface Hn ⊂ Pm of degree deg(Hn) = n
with intersection X∩Hn linearly equivalent to a smooth and geometrically integral curve Cn (again
this follows from either [Jou83, Théorème 6.10 et Corollaire 6.11] if k is an infinite field or [Poo04,
Theorem 1.1 and Proposition 2.7] if k is finite).

For any n ≥ n0 we have an exact sequence

0→ OX(−n)→ OX → OCn → 0

which shows that

χ(Cn,OCn) = χ(X,OX)− χ(X,OX(−n)).

Similarly one can get an exact sequence by twisting

0→ OX(−n)→ OX(n0 − n)→ OCn0
(n0 − n)→ 0.

Substitution then shows that

1− g(Cn) = χ(Cn,OCn) = χ(X,OX)− χ(X,OX(−n))

= χ(X,OX)− χ(X,OX(n0 − n)) + χ(Cn0 ,OCn0
(n0 − n)).

Finally, rearranging the above shows that the genus g(Cn) can be written

g(Cn) = χ(X,OX(n0 − n))− χ(Cn0 ,OCn0
(n0 − n))− χ(X,OX) + 1

which is a numerical polynomial in the variable n of degree 2 as claimed. �

In some explicit cases for varieties X one can determine the exact values of Σg(X).

Example 2.3. If X = P2, then

Σg(X) = {0, 1, 3, 6, 10, ...}

is the set of all integers n that can be expressed as n = 1
2(d− 1)(d− 2) for some integer d ≥ 1 by

the degree-genus formula [Har77, Chapter V Example 1.5.1]. (For k finite, one can compare with
[Poo04, Section 3.5 Remark]).

If X = P3 and k is infinite, then

Σg(X) = {0, 1, 2, ..} = N ∪ {0}
since X contains every smooth curve C defined over k.

If X = P1 × P1 and k is infinite then

Σg(X) = {0, 1, 2, ...} = N ∪ {0}
since X contains curves of arbitrary genus by the bidgree-genus formula (see [Har77, Chapter V
Example 1.5.2]). Compared to Y = P2, this shows that Σg(X) 6= Σg(Y ) so that this set is not a
birational invariant (cf. Corollary 3.4 below).

If X ⊂ P3 is a smooth cubic surface defined over an algebraically closed field k, then

Σg(X) = N ∪ {0}
by [Har77, Chapter V Ex. 4.9].

Example 2.4. Let X = C1 × · · · ×Cr be the product of a finite number of smooth and projective
curves C1, ..., Cr. Then for any element n ∈ Σg(X) one has n ≥ min{g(Ci)}. If g(Ci) = 0 for
some i, then this doesn’t say anything so assume g(Ci) > 0 for each i. To see this claim, label the
projections πi : X → Ci. One can observe that if D ⊂ X is a smooth and projective curve, then
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πi(D) is dominant, hence surjective, for some index 1 ≤ i ≤ r. If the base field k has characteristic
zero, then the morphism D → Ci gives an inequality

2(g(D)− 1) = 2deg(πi|D)(g(Ci)− 1) +R ≥ 2(g(Ci)− 1)

where the first equality is just the Riemann-Hurwitz formula [Sta19, Tag 0C1D] and the claim
follows. If the base field k has characteristic p > 0, then the morphism D → Ci may factor into
morphisms [Sta19, Tag 0CD2]

D → D(pn) → Ci

where g(D) = g(D(pn)) by [Sta19, Tag 0CD0] and where the same Riemann-Hurwitz formula

argument now gives g(D(pn)) ≥ g(Ci).

When working over an arbitrary field, there are some arithmetic obstructions to the possible
values that can occur among the set Σg(X). Recall that the index of X is the greatest common
divisor of the degrees of the residue fields of closed points on X,

ind(X) = {gcd([k(x) : k]) : x ∈ X is a closed point}.

If C ⊂ X is a smooth curve then one has the divisibility relations

ind(X) | ind(C) | deg(ΩC) = 2g(C)− 2.

Example 2.5. If X = SB(A) is the Severi-Brauer variety associated to a division algebra A of
degree deg(A) = 3, then X is a nontrivial twisted form of P2 with ind(X) = 3. In this case

Σg(X) = {1, 10, 28, 55, 91, ...}

is the set of all integers n that can be written n = 1
2(3d− 1)(3d− 2) for some integer d ≥ 1.

Example 2.6. If X = SB(Q1⊗Q2) is the Severi-Brauer variety associated to a product of Quater-
nion algebras Q1 6= Q2 then

Σg(X) = {1, 3, 5, 7, 9, ...}
is the set of all odd positive integers. To see this, note that since ind(X) = 4 this is as large as the
set Σg(X) can be. To see that all of these values actually do occur, one observes that X contains
the variety Y = SB(Q1) × SB(Q2) as a twisted Segre subvariety. By applying Bertini’s theorem
to the very ample classes in

Pic(Y ) = 2Z× 2Z ⊂ Z× Z = Pic(P1 × P1)

and using the bidgree-genus formula it follows that

Σg(Y ) = {1, 3, 5, ...}

is the set of all integers n that can be written n = (2d1 − 1)(2d2 − 1) for any pair of integers
d1, d2 ≥ 1.

Example 2.7. This example shows that one can’t necessarily deduce the set Σg(X) from the set

Σg(Xk) of smooth k-curves lying in Xk for an algebraic closure k ⊃ k.

Let X = ResC/R(P1
C) be the Weil restriction. Then XC = P1 × P1 so that Σg(XC) = N ∪ {0} by

Example 2.3. But, since Pic(X) = Z the set Σg(X) has zero density in N∪ {0} by Proposition 3.2.
On the other hand, if Y = P1

R ×SB(Q) for the unique nontrivial division algebra Q over R then
YC = P1 × P1 and a similar analysis to Example 2.6 using the inclusion

Pic(Y ) = Z× 2Z ⊂ Z× Z = Pic(P1 × P1)

shows that Σg(Y ) = N ∪ {0}.
In this example, ind(X) = 1 and ind(Y ) = 2.
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3. Surfaces

Throughout this section we fix a smooth (hence projective) surface S. The main theorem of this
section is Theorem 1.4, that shows if X is a smooth and projective variety defined over an infinite
field k, containing S, and if S admits a morphism to a curve C then Σg(X) grows linearly. After
giving the proof of this theorem, we deduce some of its consequences. We’ll need the following
lemma.

Lemma 3.1. Let S be a smooth and projective surface defined over an infinite field k. Assume that
there exists a globally generated line bundle L = O(D) on S, corresponding to an effective divisor
D on X, that has zero self intersection, i.e. D2 = 0. Then for any very ample smooth curve C ⊂ S
and for any integer n ≥ 1 there is a very ample smooth curve Cn linearly equivalent to C + nD
with genus

g(Cn) =
1

2
nD(2C +K) +

KC + C2 + 2

2
where K is the canonical divisor on S.

Proof. Since D is globally generated, C + nD is very ample for all n ≥ 1. By Bertini’s theorem
[Jou83, Théorème 6.10 et Corollaire 6.11] one can find a smooth and geometrically integral curve
Cn linearly equivalent to C+nD. Applying the adjunction formula to Cn and computing the degree
of the canonical bundle on Cn (noting D2 = 0) gives the desired formula for the genus g(Cn). �

Proof of Theorem 1.4. To prove this theorem, we’re going to show that Σg(X) contains the set
of integers of the form an + b for all n ≥ 1 and for some constants a, b (in this case, we won’t
necessarily find that a, b ≥ 0 which is why we write a, b here and not α, β).

It suffices by Remark 2.1 to consider only the case X = S. We’re assuming then that S admits a
nonconstant morphism f : S → C to a curve C and, since C is proper, it suffices to assume C = P1.
In this case, S has a globally generated line bundle O(D) = f∗O(1) corresponding to the effective
divisor D that is the fiber of f over any rational point of C; in particular D2 = 0.

Thus Lemma 3.1 applies to give a sequence of elements in Σg(S) depending on an integer n ≥ 1
that grows linearly in n which concludes the proof. �

As a sort of converse to Theorem 1.4, we give the following proposition (note there are no
restrictions on the base field).

Proposition 3.2. Assume that S is a smooth surface of Picard rank one. Label the elements of

Σg(S) = {n1, n2, ...}

so that ni+1 > ni for all i ≥ 1. Then for every pair of constants α, β ≥ 0 there is an index
j0 = j0(α, β) depending on α, β so that

nj ≥ αj + β

for every j ≥ j0. Moreover, the set Σg(S) has zero density in N ∪ {0}.

Proof. Since S has Picard rank one, any smooth and projective curve C ⊂ S is linearly equivalent
to a multiple C = nD of an ample divisor D. Using the adjunction formula it follows that the
genus g(C) equals

g(C) =
1

2
(n2D2 + nKD) + 1

where K is the canonical class on S. Since D is ample, we have D2 > 0. It follows that even if
every positive multiple of D in the Picard group was represented by a smooth curve, then one could
still find such an index j0 depending on the two constants α, β ≥ 0 that has the desired properties.
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To see the claim about the density of Σg(S), we recall that the density µ(Σg(S)) of Σg(S) in
N ∪ {0} is defined as the limit

µ(Σg(S)) = lim
n→∞

#(Σg(S) ∩ {0, ..., n})
n+ 1

.

The previous paragraph then shows

0 ≤ µ(Σg(S)) = lim
n→∞

#(Σg(S) ∩ {0, ..., n})
n+ 1

= lim
j→∞

j

nj + 1

≤ lim
j→∞

j

(1/2)(j2D2 + j(KD)) + 2
= 0

as desired. �

Example 3.3. Proposition 3.2 applies to P2, some simple abelian surfaces, and some K3 surfaces
among others examples.

Another immediate consequence of Theorem 1.4 is the following corollary that says given a
smooth surface S, one can blowup at a subvariety to produce (sometimes many) more curves.

Corollary 3.4. For any smooth surface S, there is a smooth surface S̃ and a surjection π : S̃ → S
satisfying the properties:

(1) π restricts to an isomorphism on a dense open U ⊂ S̃
(2) there is a nonconstant morphism S̃ → P1.

In particular if k is infinite, then S̃ satisfies the conditions of Theorem 1.4. �
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