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Abstract. Let X /S be any Severi–Brauer scheme of constant
relative dimension n over a Noetherian base scheme S. For each
polynomial ϕ(t) ∈ Q[t], we construct a scheme Hilbtw

ϕ(t)(X /S)

that fppf locally, on a cover S′/S splitting X /S, is the Hilbert
scheme Hilbϕ(t)(XS′/S′) of the projective bundle XS′/S′.

We then study curves of small degree on a Severi–Brauer variety
in order to analyze examples. Our primary interest, in the case that
X is the Severi–Brauer variety associated to a central simple k-
algebra of degree n > 2, over a field k, is the subscheme Elln(X) of
Hilbtw

nt (X/k) parametrizing curves that are smooth, geometrically
connected, and of genus 1.
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1. Introduction

This work originated from the idea that one could study deformations
of curves on a Severi–Brauer variety to obtain algebraic information on
the structure of the associated central simple algebra. Specifically, this
work was an attempt to implement the following program:

(Step 1) for each polynomial ϕ(t) of Q[t], construct a variant of the
Hilbert scheme parametrizing closed subschemes of a Severi–
Brauer variety X with Hilbert polynomial ϕ(t) geometrically;
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(Step 2) for a fixed polynomial ϕ(t) = rt + s, classify possible curves
C ⊂ X defined over the ground field with Hilbert polynomial
ϕ(t) over a splitting field for X;

(Step 3) construct a rationally defined deformation of an irreducible
curve C ⊂ X with this Hilbert polynomial to a curve C∗ ⊂ X
having the same Hilbert polynomial, and which, additionally,
is geometrically a union of rational curves;

(Step 4) study the action of the absolute Galois group on the geometric
irreducible components of C∗ to obtain specific restrictions on
the possible Galois splitting fields of X.

In this paper, we complete (Step 1) in much broader generality and we
provide some initial analysis in (Step 2) for specific cases pertaining to
curves of minimal degree in a Severi–Brauer variety.

To be precise, we prove in Section 2 (culminating in Theorem 2.5)
that for any polynomial ϕ(t) ∈ Q[t], and for any Severi–Brauer scheme
X /S of relative dimension n over a Noetherian base scheme S, there
exists a scheme Hilbtw

ϕ(t)(X /S) parametrizing subschemes of X that
are flat and proper over S with Hilbert polynomial ϕ(t) over any fppf
splitting S ′/S for X /S. It turns out that, with only minor changes, one
can adapt the proof of representability for the usual Hilbert scheme of a
projective bundle to this generalized setting of Severi–Brauer schemes.

We then turn, in Section 3, to the study of those Hilbert schemes
Hilbtw

ϕ(t)(X/k), for a Severi–Brauer variety X over a fixed field k, that
are associated to linear polynomials ϕ(t), i.e. to those Hilbert schemes
parametrizing subschemes consisting of either curves or curves-and-
points. In some cases of minimal degree subschemes, we get very precise
information (e.g. in Example 3.11 we give a satisfying picture for the
components of Hilbtw

5t (X/k), for a Severi–Brauer variety X associated
to a degree 5 division algebra, that can possibly have a rational point).

Of particular interest, to the author, is the subscheme Elln(X) of
Hilbtw

nt (X/k) parametrizing smooth and geometrically connected curves
of genus one in a Severi–Brauer variety X of dimension n−1. It follows
from a result of Ein [Ein86] that Elln(X) is geometrically irreducible of
dimension n2 (see Proposition 4.3). For the program outlined above,
we also observe that, when X is associated to a division algebra of
prime index n = p > 2, the only geometrically reducible curves C ⊂ X
appearing in the same component Elln(X) and defined over the ground
field are, geometrically, p-gons of lines (Lemma 3.12).

If one could carry out (Step 3) of the above program, then one could
use this latter observation to degenerate a smooth curve C ⊂ X of
prime degree p and of genus 1 (when one exists) to a curve which is a
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geometrically reducible p-gon of lines. This p-gon contains a point of
degree p splitting X (the singular point) and the Galois closure of the
residue field of this point has Galois group admitting a quotient that
is a transitive subgroup of the automorphism group of the p-gon, i.e.
either the cyclic group Z/pZ or the full dihedral group Dp. With some
minimal assumptions this implies that the underlying division algebra
is cyclic (i.e. if p ≤ 7, if the characteristic of k is zero, and if k contains
a pth root of unity, see [RS96, Theorem 4.2]).

We conclude, in Section 4, with explicit applications to geometrically
elliptic normal curves in Severi–Brauer varieties. We construct generic
geometrically elliptic normal curves inside base extensions of generic
Severi–Brauer varieties. These generic curves have the property that
they specialize to every other geometrically elliptic normal curve inside
any other Severi–Brauer variety and we use this observation to compute
the periods and indices of these generic curves under an assumption of
coprimality to the characteristic of base field (see Theorem 4.7).

Notation. We use the following notation throughout:

• if k is a base field, then we write k to denote a fixed algebraic closure
of k and ks to denote the separable closure of k inside k

Conventions. We use the following conventions throughout:

• a variety is an integral scheme that is separated and of finite type
over a base field
• a curve is a proper scheme of pure dimension one that is separated
and of finite type over a base field.

Acknowledgments. I’d like to thank both Nitin Chidambaram and
Priyankur Chaudhuri for our frequent meetings discussing the Hilbert
scheme where I learned most of the techniques contained in this paper.
I’d also like to thank Patrick Brosnan for stimulating conversations
that gave me both the ideas and motivation needed to start this work.

2. Descent for Hilbert Schemes

Let X /S be a Severi–Brauer scheme of relative dimension n over a
Noetherian scheme S. Concretely, this means there exists an fppf cover
S ′ = {Si}i∈I of S and isomorphisms XSi

= X ×SSi
∼= Pn

Si
. We call the

data consisting of an fppf cover S ′ and isomorphisms ϵi : XSi
→ Pn

Si
a

splitting of X /S. The splitting data (Si, ϵi)i∈I of X /S determines a
Čech 1-cocycle ξ giving rise to a class in Ȟ1

fppf (S,PGLn+1/S).
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Conversely, descent shows that every element ξ of Ȟ1
fppf (S,PGLn+1/S)

is determined by the splitting data (Si, ϵi)i∈I , for some fppf cover S ′ =
{Si}i∈I of S and some Severi–Brauer scheme X /S which is uniquely
determined by ξ up to isomorphism. For each Čech 1-cocycle ξ one
can then choose splitting data (Si, ϵi)i∈I and, for any polynomial ϕ(t) ∈
Q[t], descend the Hilbert schemes Hilbϕ(t)(Pn

Si
/Si) defined over Si to a

scheme Hilbtw
ϕ(t)(X /S) defined over S (cf. Lemma 2.4 below).

The goal for this section is to prove that Hilbtw
ϕ(t)(X /S) represents

the functor which associates to any locally Noetherian S-scheme T the
set of all subschemes of XT that are flat and proper over T and which,
locally for the fppf cover S ′/S, have Hilbert polynomial ϕ(t). This is
the content of Theorem 2.5; the proof follows the construction of the
Hilbert scheme of a projective bundle closely, e.g. as given in [Kol96],
making small generalizations so that the same argument can be applied
to any Severi–Brauer scheme X /S.

To start, recall from [Qui73, §8.4] that Quillen has constructed a
universal vector bundle J on the Severi–Brauer scheme X /S having
the following property: locally for an fppf cover S ′/S splitting X /S,
J admits isomorphisms

J |Si
∼= OPn

Si
(−1)⊕n+1 for each Si ∈ S ′

compatible with the isomorphisms XSi
∼= Pn

Si
of the splitting. We write

Q = J ∨ = Hom(J ,OX ) to denote the dual of J and we call Q the
Quillen bundle on the Severi–Brauer scheme X /S.

Lemma 2.1. Suppose that S is connected and write π : X → S for
the structure map of X /S. Let F be an S-flat coherent sheaf on X .
Then there exists a numerical polynomial ϕ(t) ∈ Q[t] and an integer N
so that the following equality holds

rk(π∗(F ⊗Q⊗t)) = ϕ(t) · rk(Q⊗t)

for all integers t ≥ N .

Proof. Let S ′ = {Si}i∈I be an fppf cover splitting X /S and write
πi : XSi

→ Si for map coming from base change. Then, for all t ≥ 1,
there are isomorphisms

π∗(F ⊗Q⊗t)|Si
∼= πi∗(F|XSi

⊗ (OPn
Si
(1)⊕n+1)⊗t) ∼= πi∗(F|XSi

(t)⊕(n+1)t).

Since πi∗(F|XSi
(t)⊕(n+1)t) ∼= πi∗(F|XSi

(t))⊕(n+1)t , the ϕ(t) of the lemma

is necessarily the Hilbert polynomial of F|XSi
on XSi

∼= Pn
Si
. □

Definition 2.2. Let X /S be a Severi–Brauer scheme over a base S.
Let F be an S-flat coherent sheaf on X . For each connected component
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Sρ ⊂ S we define the reduced Hilbert polynomial of F on Sρ to be the
numerical polynomial rhF(t) ∈ Q[t] guaranteed to exist by Lemma 2.1.
In other words, rhF(t) is uniquely characterized by the existence of an
integer N ≥ 0 and equality

rk(π∗(F ⊗Q⊗t)|Sρ) = rhF(t) · rk(Q⊗t) for all t ≥ N .

If the reduced Hilbert polynomial of F on Sρ is equal to rhF(t) for all
connected components Sρ ⊂ S, then we call rhF(t) the reduced Hilbert
polynomial of F . When F = OV is the structure sheaf of a subscheme
V ⊂X we write rhV (t) instead of rhOV

(t).

Remark 2.3. If X /S is a split Severi–Brauer scheme (i.e. if X /S
is isomorphic over S with a projective bundle PS(E) for some vector
bundle E on S) then, for any S-flat coherent sheaf F on X , the reduced
Hilbert polynomial rhF(t) is just the usual Hilbert polynomial hF(t)
with respect to the line bundle OPS(E)(1).

Lemma 2.4. Let X /S be a Severi–Brauer scheme over any scheme S.
Let F be a coherent sheaf on X . Then for every polynomial ϕ(t) ∈ Q[t]
there is a locally closed subscheme Sϕ(t) ⊂ S with the property:

(f) given a morphism T → S, the pullback FT on XT is flat over T
with reduced Hilbert polynomial rhFT

(t) = ϕ(t) if and only if T → S
factors T → Sϕ(t) ⊂ S.

Proof. The lemma holds fppf locally over the base S. More precisely,
let S ′ = {Si}i∈I be any fppf cover splitting X /S with I a finite set
and let ϵi : XSi

→ Pn
Si

be isomorphisms realizing the splitting. Write
Ti = T ×S Si and Fi for the pullback of F to XTi

. Then for each of the
indices i ∈ I, there is a locally closed subscheme Si,ϕ(t) ⊂ Si so that
Fi is flat over Ti with reduced Hilbert polynomial rhFi

(t) = ϕ(t) if and
only if Ti → Si factors Ti → Si,ϕ(t) ⊂ Si. Because of Remark 2.3, the
reduced Hilbert polynomial rhFi

(t) is just the Hilbert polynomial of
hϵi∗Fi

(t) and this follows from [Kol96, Theorem I.1.6] which ultimately
refers to [Mum66, Lecture 8].
To see that the lemma also holds over S, we note that it’s possible

to descend the Si,ϕ(t) to a scheme Sϕ(t) ⊂ S with Sϕ(t) ×S Si = Si,ϕ(t).
Indeed, both of the schemes Si,ϕ(t) ×S Sj and Sj,ϕ(t) ×S Si are uniquely
characterized as subschemes of Si ×S Sj by the given property with
respect to the coherent sheaf Fi|Si×SSj

∼= Fj|Si×SSj
on XSi×SSj

. As it’s
clear that the cocycle condition on any triple product Si×S Sj×S Sk is
satisfied, it follows from [Sta19, Tag 0247] that Sϕ(t) exists as a scheme
over S (see also [Sta19, Tag 01OX,Tag 02JR]).
It remains to show that Sϕ(t) has property (f). Both the flatness of
FT and the computation for the reduced Hilbert polynomial rhFT

(t)

https://stacks.math.columbia.edu/tag/0247
https://stacks.math.columbia.edu/tag/01OX
https://stacks.math.columbia.edu/tag/02JR
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can be checked fppf locally for the cover S ′/S. The claim follows then
from the construction of Sϕ(t). □

For any locally Noetherian S-scheme T , write H
ϕ(t)
X /S(T ) for the set

(1) H
ϕ(t)
X /S(T ) :=

{
V ⊂XT

∣∣∣∣ V is proper and flat over T
and rhV (t) = ϕ(t)

}
.

The association of T to H
ϕ(t)
X /S(T ) defines a contravariant functor from

the category of locally Noetherian S-schemes to the category of sets.

For a morphism ρ : T ′ → T , the associated map H
ϕ(t)
X /S(T )→ H

ϕ(t)
X /S(T

′)

sends a subscheme V ⊂XT to V ×T T
′ ⊂XT ′ where the fiber product

is taken along the morphism ρ.

Theorem 2.5. Let X /S be a Severi–Brauer scheme over a Noetherian
base scheme S. Then, for every polynomial ϕ(t) ∈ Q[t], there exists an

S-scheme Hilbtw
ϕ(t)(X /S) which represents the functor H

ϕ(t)
X /S from (1).

In particular, there is a subscheme

Univtw
ϕ(t)(X /S) ⊂X ×S Hilbtw

ϕ(t)(X /S)

and, for any locally Noetherian S-scheme T , there is an equality

HomS(T,Hilbtw
ϕ(t)(X /S)) = H

ϕ(t)
X /S(T )

where a map f : T → Hilbtw
ϕ(t)(X /S) corresponds to the subscheme

V ∼= Univtw
ϕ(t)(X /S)×X ×SHilbtw

ϕ(t)(X /S) X ×S T.

Proof. The proof we give here is, in essence, the same as [Kol96, Proof
of Theorem I.1.4]. We’re going to break the proof into several steps.
First, we construct an S-schemeH together with a scheme U ⊂X ×SH
which end up being Hilbtw

ϕ(t)(X /S) and Univtw
ϕ(t)(X /S) respectively.

Once we’ve constructed H there will be an obvious functorial map

(2) HomS(T,H)→ H
ϕ(t)
X /S(T )

defined as in the theorem statement. The next step will be to construct
a map in the other direction

(3) H
ϕ(t)
X /S(T )→ HomS(T,H).

The proof will be complete once we show that these two maps are
mutually inverse.
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Throughout the proof, we’ll refer to the following diagram.

X ×S T X ×S Y X

T Y S

ρ̃X

πT

ρX

p1

p2 π

ρ̃

ρ

σ

For the first part of the proof, we use the following notation:

• π : X → S is the S-structure map of the Severi–Brauer scheme
X /S of relative dimension n,
• ϕ(t) is a fixed polynomial from Q[t] and N > 0 is an integer (chosen
to be divisible by n+1) so that hi(V,OV (N)) = 0 for any subscheme
V ⊂ Pn with Hilbert polynomial ϕ(t) [Kol96, Theorem I.1.5],
• Y = GrS(ϕ(N), π∗L) is the Grassmannian S-bundle of rank ϕ(N)
quotient bundles of the locally free π∗L, where L = (detQ)⊗N/(n+1)

is the given tensor power of the determinant of the Quillen bundle,
with S-structure map σ : Y → S,
• and p1, p2 : X ×S Y → X ,Y are the first and second projections
from the fiber product.

On Y there is a short exact sequence

0→ U → σ∗π∗L → V → 0

with V the universal quotient bundle of rank ϕ(N) and U the universal
subbundle. Pulling back to X ×S Y we get a map

(4) p∗2U → p∗2σ
∗π∗L = p∗1π

∗π∗L → p∗1L

by composing with the (π∗, π∗)-adjunction map. Let C be the cokernel
of this composition. The projection p2 : X ×SY → Y realizes X ×SY
as a Severi–Brauer scheme over Y so that we can apply Lemma 2.4 to
the sheaf C ⊗ (p∗1L∨). In this way, we get a subscheme H ⊂ Y fitting
into a Cartesian diagram

X ×S H X ×S Y ×Y H X ×S Y

H Y

i′

p′2 p2

i
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so that C ′ = i′∗(C⊗p∗1L∨) is flat overH with reduced Hilbert polynomial
rhC′(t) = ϕ(t). Further, since C ′ is a quotient of OX ×SH , the sheaf C ′
defines a closed subscheme U ⊂X ×S H with OU = C ′.

Now let ρ : T → S be an arbitrary locally Noetherian S-scheme.
From the construction of H, any morphism f : T → H of S-schemes

produces an element of H
ϕ(t)
X /S(T ) by pulling back U ⊂ X ×S H along

the induced fX : X ×S T →X ×S H. This is the definition of (2).
Conversely, from any subscheme V ⊂ X ×S T flat over T with

reduced Hilbert polynomial rhV (t) = ϕ(t) we can identify a morphism
f : T → H as follows. For this part of the proof, we use additionally:

• ρX : X ×S T → X is the first projection from the fiber product
X ×S T taken with respect to ρ,
• and πT : X ×S T → T is the second projection.

Tensoring the ideal sheaf sequence for V with ρ∗X L and pushing forward
along πT gives the exact sequence

(5) 0→ πT∗(IV ⊗ ρ∗X L)→ πT∗ρ
∗
X L → πT∗(OV ⊗ ρ∗X L).

The rightmost arrow of this sequence is surjective since the coherent
sheaf R1πT∗(IV ⊗ρ∗X L) = 0 vanishes; this can be checked after splitting
X /S and using our choice of N , cf. [Kol96, Theorem I.1.5]. Moreover,
each of the terms in (5) is locally free by [Har77, Theorem III.12.11]
and rk(πT∗(OV ⊗ ρ∗X L)) = ϕ(N).

The base change map

ρ∗π∗L → πT∗ρ
∗
X L

is an isomorphism since it becomes one after an fppf extension of S, see
[Nit05, Lemma 5.4]. Hence the surjection ψ : ρ∗π∗L → πT∗(OV ⊗ρ∗X L)
defines a map

ρ̃ : T → Y with ρ̃∗(σ∗π∗L → V) = ψ

by the functorial description of Y . If we let ρ̃X : X ×S T →X ×S Y
denote the map obtained by base change, then we find that

ρ̃∗X C = ρ̃∗X coker (p∗2U → p∗2σ
∗π∗L = p∗1π

∗π∗L → p∗1L)
= coker (π∗

TπT∗(IV ⊗ ρ∗X L)→ π∗
Tρ

∗π∗L = ρ∗X π
∗π∗L → ρ∗X L) .

The composition factors through the adjunction

π∗
TπT∗(IV ⊗ ρ∗X L)→ IV ⊗ ρ∗X L,

which induces the isomorphism ρ̃∗X (C ⊗ p∗1L∨) ∼= ρ̃∗X C ⊗ ρ∗X L ∼= OV .
Since V is flat over T with reduced Hilbert polynomial rhV (t) = ϕ(t),
this implies that ρ = i ◦ f factors via a morphism f : T → H since H
satisfies property (f). The association sending V to f defines the map
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in (3). With a moment’s thought (and also noting that the factorization
above is unique by [Sta19, Tag 01L7]), it’s clear the maps (2) and (3)
are mutually inverse. This completes the proof. □

Definition 2.6. We’ll call Hilbtw
ϕ(t)(X /S) the Hilbert scheme of X /S

that parameterizes subschemes with reduced Hilbert polynomial ϕ(t).
The superscript tw is a reminder that this is a twist of one of the usual
Hilbert schemes of a projective bundle as the next remark notes.

Remark 2.7. If X /S is split, i.e. if X /S is a projective bundle PS(E)
for some vector bundle E on S, then the above theorem recovers the
usual Hilbert scheme Hilbϕ(t)(PS(E)/S). This also shows the following
statement: if X /S is any Severi–Brauer scheme over a Noetherian base
scheme S, and if S ′/S is an fppf cover splitting X /S, then there are
splitting isomorphisms

Hilbtw
ϕ(t)(X /S)×S S

′ ∼= Hilbϕ(t)(XS′/S ′)

as claimed in the beginning of this section. Consequently, the scheme
Hilbtw

ϕ(t)(X /S) inherits any property of Hilbϕ(t)(XS′/S ′) that can be
checked fppf locally on the base, i.e. being finite-type, proper, or smooth
over S holds if it also does over S ′.

Remark 2.8. Given any Severi–Brauer scheme X /S with structure
map π : X → S, it follows from [Sta19, Tag 01VR] that L = detQ is a
π-relatively very ample line bundle. Hence π is projective with respect
to L and for any polynomial ϕ(t) ∈ Q[t] there is a usual Hilbert scheme
Hilbϕ(t)(X /S) parametrizing flat and proper subschemes of X whose
Hilbert polynomial with respect to L is ϕ(t). If X has constant relative
dimension n− 1 over S, then there is an isomorphism

Hilbtw
ϕ(t)(X /S) ∼= Hilbϕ(nt)(X /S).

The primary benefit in working with Hilbtw
ϕ(t)(X /S) instead of the

usual Hilbert scheme is in the canonical nature of its construction (e.g.
the twisted and usual Hilbert scheme are both realized as subschemes of
certain projective bundles; however, in these embeddings, the relative
codimension of the twisted Hilbert scheme will always be much lower
than that of the usual one).

The infinitesimal theory of Hilbtw
ϕ(t)(X /S) can also be checked on

an fppf cover of the base, so we get the following corollary using the
fact that the scheme Hilbtw

ϕ(t)(X /S) is fppf locally, e.g. on a cover S ′/S
splitting X /S, isomorphic to Hilbϕ(t)(Pn

S′/S ′).

Corollary 2.9. Let X /S be a Severi–Brauer scheme over S. Let s ∈ S
be a point, let F be a field, and let p : Spec(F ) → s be a morphism.

https://stacks.math.columbia.edu/tag/01L7
https://stacks.math.columbia.edu/tag/01VR


10 EOIN MACKALL

Let V ⊂ XF be a subscheme with ideal sheaf IV and reduced Hilbert
polynomial rhV (t) = ϕ(t). Then the following are true:

(1) The Zariski tangent space of Hilbtw
ϕ(t)(XF/F ) at the F -point given

by V via Theorem 2.5 is naturally isomorphic to

HomOXF
(IV ,OV ) = HomOV

(IV /I2V ,OV ).

(2) The dimension of every irreducible component of Hilbtw
ϕ(t)(XF/F )

at the F -point defined by V is at least

dimFHomOXF
(IV ,OV )− dimFExt

1
OXF

(IV ,OV ) + dimsS.

(3) If V ⊂ XF is (fppf) locally unobstructed, then the dimension of
every irreducible component of Hilbtw

ϕ(t)(X /S) at any point in the
image of the point defined by V is at least

dimFHomOV
(IV /I2V ,OV )− dimFH

1(V,Hom(IV /I2V ,OV )) + dimsS.

Moreover, in either of the cases (2) or (3) above, if the lower bound
given for the dimension is equal to the dimension of every irreducible
component of Hilbtw

ϕ(t)(X /S) at the point defined by V , then the map

Hilbtw
ϕ(t)(X /S)→ S

is a local complete intersection morphism at that point.

Proof. This is a combination of [Kol96, Theorems I.2.10 and I.2.15].
See [Kol96, Definition I.2.11] for the definition of locally unobstructed
subschemes. □

3. Classifying subschemes

From now on, we work in the following setting: we fix a base field k, a
k-central simple k-algebra A, and we let X = SB(A) be the associated
Severi–Brauer variety of A. We use the triple (d, n,m) to refer to the
degree, index, and exponent of A respectively, i.e.

d = deg(A), n = ind(A), m = exp(A).

In this section, we analyze the subschemes ofX corresponding to points
in the Hilbert schemeHilbtw

nt (X/k). We assume throughout this section
that d > 2 so that X is not a curve itself.

Lemma 3.1. Let C ⊂ X be a curve. Let p be a prime number. Then
the degree deg(C) satisfies the following

vp(deg(C)) ≥

{
vp(n) if p is odd

vp(n)− 1 if p = 2.
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In other words, the integer n divides deg(C) if n is odd and the integer
n/2 divides deg(C) if n is even.

Proof. Let F be any splitting field for X. The degree deg(C) is defined
as the unique integer so that there is an equality [CF ] = deg(C)[L]
inside the Chow group CH1(XF ) where L ⊂ XF

∼= Pd−1
F is any line.

The degree deg(C) is independent of the choice of splitting field F .
To check the given divisibility relations, it suffices to work p-locally

in the group CH1(XF )⊗Z(p). By a corestriction-restriction argument,
it therefore suffices to assume n = pr is a prime power of p. The case
that p is odd is [Mac21, Theorem 4.7]. So we can assume that p = 2.

By first replacing k with some (possibly large) field extension that
doesn’t change the index of A, we can assume that m = exp(A) = 2.
Let e ∈ CH1(X) be the class of a divisor that has degree m = exp(A)
over any splitting field for X. Let p be any closed point of X with
[k(p) : k] = n = 2r (the residue field of such a point corresponds to a
maximal subfield of the underlying division algebra and the point itself
corresponds to a minimal left ideal inside the algebra over this field).
Set F = k(p) and let q ∈ XF be any F -rational point inside pF . Then
since CH0(X) = Z is generated by the class of the point p, we find (by
restricting to F the relation e · [C] = a[p] that holds over k for some
integer a ≥ 1) that

eF · [CF ] = 2deg(C)[q] = a[pF ] = a2r[q].

In other words, we find 2r−1 divides the degree deg(C). □

Remark 3.2. In fact, when the index n is a power of 2, it follows that
for any field F splitting X, the image of CH1(X) inside CH1(XF ) = Z
by restriction is exactly (n/2)Z. Generators of the image are exactly the
restrictions of the classes cn−2(ζX(1))cn(ζX(1))

(d/n)−1 and c1(ζX(m))d−2

constructed in [KM19, Appendix A].

Example 3.3. In this example, we construct some curves in Severi–
Brauer varieties associated to central simple k-algebras of index n = 2r

with 2-adic valuation of the degree strictly smaller than r.
For an example of a curve C with minimal possible degree in X, let

A = Q1⊗Q2 be a biquaternion algebra of index 4 split by a biquadratic
extension F = k(

√
a,
√
b) with Galois group Gal(F/k) = (Z/2Z)⊕2.

Let p be a point on X with residue field k(p) = F and identify the
points in pF with elements of Gal(F/k) so that the action of G on pF
is the canonical one. In XF

∼= P3
F let L1 be the line passing through

the points (0, 0) and (0, 1) and let L2 be the line passing through the
points (1, 0) and (1, 1). Then L1 ∪ L2 forms a Galois orbit, hence it
descends to the ground field k to give a curve C ⊂ X with deg(C) = 2.



12 EOIN MACKALL

If the division algebra A = Q1⊗· · ·⊗Qr is an r-fold (r > 2) product
of distinct quaternion algebras split by a multi-quadratic extension
F/k with Gal(F/k) ∼= (Z/2Z)⊕r, then there is a point p on X with
residue field F . One can pass a Galois orbit of lines through pF which
is essentially an r-dimensional cube Ir = [0, 1]r with lines replacing the
edges of the cube. The curve C ⊂ X that one gets from this cube has
degree deg(C) = r2r−1 (equal to the number of edges of the r-cube).
If r = 3 then this curve has arithmetic genus h1(C,OC) = 23−2

(
3
2

)
− 1

(equal to the number of faces of the 3-cube minus 1).
In general, any division algebra A of index n = 2r is split by a

separable field extension F/k of degree [F : k] = 2r. For this field F ,
there is a point p on X with residue field k(p) = F and pks contains 2

r

points over a separable closure ks of k. Passing a line between every
pair of points in pks gives a Gal(ks/k) orbit that descends to a curve
C ⊂ X. The degree of C is equal to the number of edges in the
complete graph Kn, i.e. deg(C) =

(
n
2

)
= 2r−1(2r − 1).

Lemma 3.4. Assume that A is a division k-algebra, i.e. assume n = d.
Let V ⊂ X be any subscheme of X containing an irreducible component
C of dimension dim(C) ≥ 1. Then V is geometrically nondegenerate.

Furthermore, if C ⊂ X is any geometrically integral curve in X with
degree deg(C) = p for some integer p ≥ 1, then the geometric genus of
C is bounded above by

ggeom(C) ≤ (d− 2)
q(q − 1)

2
+ qr

where q, r are the quotient and remainder of dividing p − 1 by d − 2,
i.e. where p− 1 = q(d− 2) + r and 0 ≤ r < d− 2.

Proof. Let k be an algebraic closure of k and ks a separable closure of
k inside k. To see that Vk is nondegenerate in Xk

∼= Pd−1

k
, it suffices to

show that Ck is contained in no hyperplane.
Assume to the contrary that there is a hyperplane H ′ containing Ck,

and let H be the unique hyperplane inside Xks with H×ks k = H ′. Let
α be a 1-cocycle of G = Gal(ks/k) representing X in H1(G,PGLn(k

s)).
Then Cks is contained in each of the (finitely many) Galois orbits of H
coming from α. In particular, we get an inclusion

Cks ⊂
⋂
g∈G

gH

with the right hand side a Galois invariant linear subspace ofXks . Since
this subspace would necessarily descend to the field k, this contradicts
the fact that A was assumed to be a division k-algebra (which implies
that X has no twisted linear subvarieties).
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Now suppose that C is a geometrically integral curve inX. To bound
the geometric genus of C, it suffices to work over the algebraic closure.
In particular, we can assume that C is an integral curve nondegenerate
inside of Pd−1. Then the claim is just Castelnuovo’s bound [Har81]. □

Remark 3.5. The above proof even shows the more general statement
that, if A is any central simple k-algebra and if V ⊂ X is any subscheme
of X containing an irreducible component C of dimension dim(C) ≥ 1,
then Vk is set-theoretically contained in a hyperplane of Xk if and only
if V is set-theoretically contained in a twisted linear subvariety Y ⊊ X.

In particular, if A is a division k-algebra, then both Vk and (Vk)red
are geometrically nondegenerate.

Remark 3.6. Assume that A is a k-division algebra so that d = n.
Then for any geometrically integral curve C ⊂ X with deg(C) ≤ n,
we find ggeom(C) ≤ 1 by applying Lemma 3.4 (and if deg(C) < n then
also ggeom(C) < 1).

Suppose C ⊂ X as above has both deg(C) ≤ n and ggeom(C) = 0.
Then, in this case, since C is geometrically integral, the normalization
Cν of C is smooth, geometrically connected, and geometrically rational.
So there is a point p on Cν with [k(p) : k] = 2. As Cν maps to X, this
can only happen if d = 2.

It follows that any smooth and geometrically connected curve C ⊂ X
with deg(C) ≤ n has genus ggeom(C) = h1(C,OC) = 1 and deg(C) = n.

Typically the arithmetic genus h1(C,OC) gives more information
about a curve C and its embedding C ⊂ X. The next two lemmas give
technical tools that can allow one to determine the possible values for
the arithmetic genera of curves in X in some cases.

Lemma 3.7. Let p be a prime number. Suppose that V ⊂ X is any
subscheme whose irreducible components Pi ⊂ V have dim(Pi) ≤ 1.
Then we have

vp(h
0(V,OV )− h1(V,OV )) ≥

{
vp(n) if p is odd

vp(n)− 1 if p = 2.

In other words, the integer n divides χ(V,OV ) if n is odd and the integer
n/2 divides χ(V,OV ) if n is even.
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Proof. It follows from flat base change [Sta19, Tag 02KH] that this can
be checked geometrically. This fits into a commutative diagram

K(Xk) Z

K(X) Z

where the horizontal arrows are pushforwards along the structure map
(with the identificationK(Spec(k)) = Z = K(Spec(k)) of Grothendieck
rings) and the vertical arrows are induced by extension of scalars. The
class [OV ] in K(X) sits in the topological filtration τ1(X) ⊂ K(X)
generated by coherent sheaves supported in dimension 1 or less.

The image of τ1(X) under the left vertical map is given in [Mac21,
Theorem 4.7] under the assumptions that p is odd and n = pr. In that
particular case, τ1(X) = prτ1(Xk) with generators pr[OP1 ] and pr[Oq]

for the class of a k-rational point q ∈ Xk. The horizontal arrows in
the diagram above take the class of a coherent sheaf [F ] to χ(X,F).
Writing [OV ] = apr[OP1 ] + bpr[Oq] it follows that

pr(a+ b) = χ(X,OV ) = χ(V,OV ) = h0(V,OV )− h1(V,OV ).

Since it suffices to check the claim with coefficients in Z(p), the case
that p is odd follows from the particular case above by a restriction-
corestriction argument. The case p = 2 follows by a similar argument
using Lemma 3.1 to show τ1(X) ⊂ 2r−1τ1(Xk) when n = 2r. □

Lemma 3.8. Suppose that V ⊂ X is any subscheme whose irreducible
components Pi ⊂ V have dim(Pi) ≤ 1. Assume that rhV (t) = rt+s for
some integers r, s with r ≥ 1. Then h1(V,OV ) ≤ 1

2
(r2−3r)+h0(V,OV ).

Proof. This is a bit overkill but, since we have

Hilbtw
rt+s(X/k)×k k ∼= Hilbrt+s(Pd−1

k
/k)

it’s enough to show that the right hand side is empty whenever there
is an inequality h1(V,OV ) >

1
2
(r2 − 3r) + h0(V,OV ). This is proved in

[Har66, Corollary 5.7]. More specifically, Hartshorne shows there that
Hilbrt+s(Pd−1

k
/k) is nonempty if and only if one has m0 ≥ m1 ≥ 0

when rt+ s is written as

rt+ s =

(
t

1

)
−

(
t−m0

1

)
+

(
t+ 1

2

)
−
(
t+ 1−m1

2

)
= m0 +m1t+

1

2
(m1 −m2

1).

https://stacks.math.columbia.edu/tag/02KH
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Comparing coefficients in the above gives

r = m1 and s = χ(Vk,OVk
) = χ(V,OV ) = m0 +

1

2
(m1 −m2

1).

Equivalently, since χ(V,OV ) = h0(V,OV )− h1(V,OV ) this implies

h0(V,OV )− s = h1(V,OV ) =
1

2
(m2

1 −m1)−m0 + h0(V,OV ).

Now Hilbrt+s(Pd−1

k
/k) is nonempty if and only if m0 ≥ m1 ≥ 0 if and

only if r ≥ 0 and 0 ≤ h1(V,OV ) ≤ 1
2
(r2 − 3r) + h0(V,OV ). □

Proposition 3.9. Suppose that A is a division k-algebra with index n.
Let V ⊂ X be any subscheme with rhV (t) = f(n)t+ s where f(n) = n
if n is odd and f(n) = n/2 if n is even. Then the following are true.

(1) There is a unique irreducible component C ⊂ V with dim(C) = 1.
Moreover, C is generically reduced and deg(C) = f(n).

(2) If the index n = p is prime, then the curve C ⊂ V is geometrically
generically reduced.

(3) If s = 0 and if the index n = p is prime, then the curve C ⊂ V is
also geometrically connected.

Proof. As rhV (t) = f(n)t + s has degree deg(rhV (t)) = 1, and since
rhV (t) is geometrically the Hilbert polynomial of Vk, the dimension
of any irreducible component Pi of V satisfies dim(Pi) ≤ 1. If there
were multiple components Pi of dim(Pi) = 1, then it would follow that
deg(Pi) < f(n) which is impossible by Lemma 3.1.

Similarly, if the unique irreducible component C ⊂ V of dimension
dim(C) = 1 had lengthk(C)OC,η > 1 at the generic point η of C, then
we would find deg(Cred) < deg(C) which also contradicts Lemma 3.1.
Hence the curve C ⊂ V is also generically reduced, proving (1).

To prove (2), i.e. to show that C is geometrically generically reduced
when n = p is prime, we can assume n = p > 2. If C is geometrically
irreducible, then geometrically we have

deg(C) = mCk
deg(Ck) with mCk

= lengthk(Ck)
OCk,η

where η is the generic point of Ck. If mCk
= p, then (Ck)red is a line in

Xk
∼= Pn−1

k
, hence topologically degenerate, contradicting Remark 3.5.

So we must have mCk
= 1 in which case Ck is generically reduced.

On the other hand, if C is geometrically reducible, then the Galois
group G = Gal(ks/k) acts transitively on the irreducible components
of Ck and all of these irreducible components have the same degree.
Since there are at least two irreducible components of Ck, there must
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be exactly p, say C1, ..., Cp, each with degree deg(Ci) = 1. Hence C is
also geometrically generically reduced in this case.

Suppose now that s = 0 and n = p > 2 is a prime number. For (3),
we suppose that the unique curve C ⊂ V is geometrically disconnected
and aim for a contradiction. Since the degree of C is deg(C) = p, there
are exactly p connected components C1, ..., Cp of Ck with deg(Ci) = 1.
Hence (Ci)red ∼= P1

k
. Considering the ideal sheaf sequence

0→ N → OCk
→ O(Ck)red

→ 0,

we find that Supp(N ) is a finite set of closed points. Therefore

h1(C,OC) = h1(Ck,OCk
) = h1((Ck)red,O(Ck)red

) = 0.

But h1(C,OC) = h1(V,OV ) = h0(V,OV ) ̸= 0 by the assumption that
the reduced Hilbert polynomial of V is rhV (t) = pt. Hence if n = p > 2
is prime, then C is geometrically connected. □

Remark 3.10. Proposition 3.9 implies that, if A is a division k-algebra
of prime index n = p, then any reduced curve C ⊂ X with deg(C) = p
is geometrically reduced [Sta19, Tag 04KS].

Example 3.11. If A is a division k-algebra with index n = 5, then we
can say something about possible subschemes V ⊂ X with rhV (t) = 5t.
Let C ⊂ V be the unique curve sitting in V with degree deg(C) = 5.
Then C is geometrically connected (by Proposition 3.9) and C is either
reduced or nonreduced. If C is reduced, then C is geometrically reduced
(by Remark 3.10). In this case h0(C,OC) = 1 so that Lemma 3.8
implies h1(C,OC) ≤ 1

2
(25− 15) + 1 = 6. With Lemma 3.7 we get that

5 divides 1− h1(C,OC). So either h1(C,OC) = 1 or h1(C,OC) = 6.
If C is reduced and geometrically reducible, then Ck is the union of 5

irreducible components C1, ..., C5 each with deg(Ci) = 1. The singular
points of Ck form a Galois orbit, so that they span Xk

∼= P4
k
linearly.

In particular, Ck is a union of 5 lines passing through at least 5 points.
We show in Lemma 3.12 below that Ck is essentially a 5-gon of lines
with h1(C,OC) = 1. Since χ(C,OC) = 0, this implies C = V .

Otherwise C is geometrically integral and the normalization of C is
a smooth genus 1 curve by Remark 3.6. Then either C is smooth and
h1(C,OC) = 1, or h1(C,OC) = 6 and C is singular [Sta19, Tag 0CE4].
In the former case we again find V = C and, in the latter case, we find
V = C ∪ p for some Artinian subscheme p ⊂ X with h0(p,Op) = 5.
But, since 5 divides the degree of any closed point of X, we find that
p is a closed point with [k(p) : k] = 5.

When C is nonreduced, we consider instead the reduced subscheme
Cred ⊂ C which still has deg(Cred) = 5 since C is generically reduced.

https://stacks.math.columbia.edu/tag/04KS
https://stacks.math.columbia.edu/tag/0CE4
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The scheme Cred is both geometrically connected (since this is true for
C by Proposition 3.9) and geometrically reduced (from Remark 3.10).
Hence h0(Cred,OCred

) = 1 and, similar to the reduced case, we find that
either h1(Cred,OCred

) = 1 or h1(Cred,OCred
) = 6 from both Lemma 3.8

and Lemma 3.7.
Now from the ideal sheaf sequence for Cred ⊂ C we find (in)equalities

h0(C,OC) > h0(Cred,OCred
) and h1(C,OC) = h1(Cred,OCred

).

It follows that if we write V = C ⊔ p as the disjoint union of C and a
possibly empty Artinian scheme p, then

0 = χ(V,OV ) = χ(C,OC) + r > χ(Cred,OCred
) + r

with r = h0(p,Op) ≥ 0. So χ(Cred,OCred
) < 0 and h1(Cred,OCred

) = 6.
But then h0(V,OV ) = 6 as well since we have h1(C,OC) = h1(V,OV ).
Since there are no closed points on X of degree less than 5, it follows
that V = C and h0(C,OC) = 6.

Lemma 3.12. Let A be a division k-algebra of prime index n = p > 2.
Let V ⊂ X be any subscheme with rhV (t) = pt and let C ⊂ V be the
unique curve from Proposition 3.9. If C is geometrically reducible, then
Ck is a p-gon of lines through p points spanning Xk

∼= Pp−1

k
.

Proof. Since C is geometrically reducible and of degree deg(C) = p, we
know that (Cred)k is the union of p-lines L1, ..., Lp. The Galois group
G = Gal(ks/k) acts transitively on the set of these lines {L1, ..., Lp},
giving a map G→ Sp whose image contains a p-cycle. Proposition 3.9
shows that the curve C is geometrically connected, so we can find an
element g ∈ G so that L1 ∩ gL1 ̸= ∅ and, after possibly relabeling the
lines L1, ..., Lp we can assume

(1) Lk = gk−1L1 for all 1 ≤ k ≤ p,
(2) Li ∩ Li+1 ̸= ∅ for all i = 1, ..., p− 1
(3) and Lp ∩ L1 ̸= ∅ also.

Assume that there is a hyperplane H ⊂ Xk
∼= Pp−1

k
containing all

lines Li with i ̸= p. Then, in particular, this H contains the set of
all singular points of Ck which are the union of Galois orbits under G.
SinceH doesn’t contain Lp, we have that gH doesn’t contain gLp = L1.
The intersection of these translates is then empty by a dimension count,⋂

g∈G

gH = ∅.

But this would imply C is smooth, a contradiction since C is assumed
singular. Hence no H can contain L1, ..., Lp−1.
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Now we go inductively. Starting with L1, we add L2 with L1∩L2 ̸= ∅
by our choice of labeling. We get that L1 ∪L2 is contained in a unique
linear subspace H1 with dim(H1) = 2. Now we consider L3. Adding L3

to L1∪L2, we know that L2∩L3 ̸= ∅ so that L1∪L2∪L3 is contained in
some linear subspace H2 with dim(H2) = 3. We also know L1∪L2∪L3

is not contained in H1 since, if it were, then L1 ∪ · · · ∪ Lp−1 would be
contained in a hyperplane. Hence #(L3 ∩ H1) = 1 and the subspace
H2 is uniquely determined as well.

Repeating this process, we find for all 1 ≤ i < p− 1 linear subspaces
Hi of dimension dim(Hi) = i+1 so that each Hi contains L1∪· · ·∪Li+1,
and #(Li+1∩Hi−1) = 1. Finally, we know #(Lp∩(L1∪· · ·∪Lp−1)) ≥ 2
(since otherwise there is a unique singular point) and we claim that
actually equality holds. If this inequality were strict, then Lp ∩ Li ̸= ∅
for some i ̸= 1, p− 1. But then

gLp ∩ gLi = L1 ∩ Li+1 ̸= ∅
and 1 < i+ 1 ≤ p− 1, contradicting that #(Hi−1 ∩ Li+1) = 1.

We think of (Cred)k as a graph with singular points as vertices and
lines as edges; the above shows that the graph associated to (Cred)k is a
p-gon on exactly p-vertices. These p-vertices form a Galois orbit under
G, so they must span Xk. Corollary 3.13 below shows that C = Cred,
which completes the proof. □

Corollary 3.13. Let A be a division k-algebra of prime index n = p.
Let V ⊂ X be any subscheme with rhV (t) = pt and let C ⊂ V be the
unique curve found in Proposition 3.9. If C is geometrically reducible,
then C is reduced, h1(C,OC) = 1, and V = C.

Proof. The proof of Lemma 3.12 describes how to construct (Cred)k as a
union of lines. One can use this construction to compute h1(C,OC) = 1
from the exact sequence (7) below and the observation that

h1(C,OC) = h1(Cred,OCred
) = h1((Cred)k,O(Cred)k

)

where the first equality comes from C being generically reduced and
the second from flat base change.

Then 1 = h1(C,OC) = h1(V,OV ) = h0(V,OV ) as rhV (t) = pt. Since

0 ̸= H0(C,OC) ⊂ H0(V,OV ),

we find that h0(C,OC) = 1. Hence C is reduced and V = C. □

4. Generic geometrically elliptic normal curves

It can be difficult to say anything complete regarding the schemes
Hilbtw

nt (X/k), as done in Example 3.11, for generalX. However, we can
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still analyze specific irreducible components of Hilbtw
nt (X/k), in some

particular cases of Severi–Brauer variety X, to some benefit.
From now on we write

(6) ψX : Univtw
ϕ(t)(X/k)→ Hilbtw

ϕ(t)(X/k)

for the canonical map coming from the projection. (By slight abuse
of notation, we use the same ψX regardless of the function ϕ(t) under
consideration). For each irreducible component V ⊂ Hilbtw

ϕ(t)(X/k) we
let ηV denote the generic point of V . If ϕ(t) = rt+ s is linear then, for
each such V , the generic fiber ψ−1

X (ηV ) is the union of a curve and a
finite number points.

There may be more than one irreducible curve in the fiber ψ−1
X (ηV ).

Proposition 3.9 can sometimes show the curve in ψ−1
X (ηV ) is irreducible.

Proposition 4.1. Suppose that A is a division k-algebra of index n.
Define f(n) to be the following function.

f(n) =

{
n if n is odd

n/2 if n is even

Assume that V ⊂ Hilbtw
f(n)t+s(X/k) is an irreducible component and let

Vsm ⊂ V denote the locus of points smooth in V .
If V has a smooth k-rational point, i.e. Vsm(k) ̸= ∅, then ψ−1

X (ηV )
contains a unique irreducible and geometrically connected curve.

Proof. Because of the isomorphisms

Hilbtw
f(n)t+s(X/k)×k k(ηV ) ∼= Hilbtw

f(n)t+s(Xk(ηV )/k(ηV )),

the generic point k(ηV ) corresponds to a subscheme ψ−1
X (ηV ) ⊂ Xk(ηV )

with reduced Hilbert polynomial rhV (t) = f(n)t+ s.
The Severi–Brauer variety Xk(ηV ) is associated to the central simple

algebra Ak(ηV ) which, because of the assumption that Vsm(k) ̸= ∅, has
index n as well (apply Lemma A.1 to the Azumaya algebra A⊗k OV,x

where x ∈ Vsm(k)). Now the claim follows from Proposition 3.9. □

Of particular interest is the following component of Hilbtw
mt(X/k) for

any integer m ≥ 1 such that n divides m.

Definition 4.2. Let Ellm(X) ⊂ Hilbtw
mt(X/k) denote the union of the

irreducible components V of Hilbtw
mt(X/k) whose generic fiber ψ

−1
X (ηV )

is a smooth and geometrically connected curve of genus 1.

If either dim(X) = 2 and m = 3, or if dim(X) ≥ 3 and m ≥ 4 is an
arbitrary integer divisible by n, then the scheme Ellm(X) is nonempty.
To see this, note that over an algebraic closure k one can always find
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a smooth genus 1 curve C; if D is any closed point on C, then the
complete linear system associated to the divisor mD gives a closed
immersion to Pm−1

k
. If m ≤ dim(X) then a linear embedding of Pm−1

k

in Pd−1

k
preserves the degree of C. Otherwise, a general projection from

Pm−1

k
to Pd−1

k
is an embedding on C preserving the degree of C.

Let x be any closed point of H = Hilbtw
mt(X/k) defined by a linear

system as described above. By base change we get a morphism

ψX |C : C = ψ−1
X (Spec(OH,x))→ Spec(OH,x)

with special fiber Ck(x) geometrically isomorphic with the curve C. By
[Sta19, Tag 01V9] there is an open U ′ ⊂ Spec(OH,x) and an open
U ⊂ C containing Ck(x) ⊂ U such that the restriction

ψX |U : U → U ′

is smooth. The complement C \ U is closed in C and, since the map
ψX |C is proper, the image ψX |C (C \ U) is closed in Spec(OH,x).

Now every nonempty closed subset of Spec(OH,x) contains x and, by
construction, the set ψX |C (C \ U) is closed and does not contain x.
Thus ψX |C (C \U) = ∅ and necessarily C = U so that ψX |C is smooth.
Since ψX |C is a smooth, proper, flat, and finitely presented morphism it
follows from [Sta19, Tag 0E0N] that ψX |C has geometrically connected
fibers. The generic fiber ψ−1

X (ηV ) for any irreducible component V ⊂ H
containing x is therefore a smooth and geometrically connected curve
of genus 1 implying that V ⊂ Ellm(X).

Proposition 4.3. Suppose A is a central simple k-algebra of degree d
and of index n. Then the following are true:

(1) Elld(X) is geometrically irreducible with dim(Elld(X)) = d2;
(2) if A has division and either A is cyclic or, if A contains a maximal

subfield F ⊂ A whose Galois closure E/k is a Galois extension of
degree 2n with dihedral Galois group, then Elln(X)(k) ̸= ∅.

Proof. We first prove (2). In either case, let x be a point of X with k(x)
either a cyclic Galois extension E/k of k of degree n (in the first case)
or a maximal subfield k(x) ⊂ A with Galois closure E/k a dihedral
Galois extension of degree 2n (in the second case). The field E splits
X and k(x) ⊗k E ∼= E⊕n either way. Let H ⊂ Gal(E/k) be a cyclic
subgroup of order n. Pick an E-rational point p in xE and let L be the
line through p and gp for any generator g of H.

The union of the H-translates of L forms a Gal(E/k)-orbit which
descends to a scheme V ⊂ X defined over k. Geometrically, the scheme
Vk is an n-gon of lines through the points xk. Hence rhV (t) = nt. We
claim the point defined by V in Hilbtw

nt (X/k) is contained in Elln(X).

https://stacks.math.columbia.edu/tag/01V9
https://stacks.math.columbia.edu/tag/0E0N
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Actually, as Vk is the scheme-theoretic union of lines we can use the
exact sequence [Sta19, Tag 0C4J]

(7) 0→ OC∪D → OC ⊕OD → OC∩D → 0

where Vk = C∪D, with C a chain of n−1 lines and D a line closing the
n-gon, to compute that h1(V,OV ) = 1 and that h1(Vk,OVk

(1)) = 0 by
tensoring the exact sequence withOXk

(1). Since Vk has lci singularities,
one can apply [Har10, Proposition 29.9] to find that Vk is smoothable.

More precisely, we find that Hilbtw
nt (X/k) is smooth at the k-rational

point defined by V ⊂ X and, over an algebraic closure, there is an
integral curve passing through both the point corresponding to Vk ⊂ Xk

and the subset of Elln(Xk) parametrizing smooth and connected curves.
In particular, the embedding V ⊂ X defines a point of Elln(X)(k)
completing the proof of (2).

Now we prove (1). If d = 3 then Hilbtw
3t (X/k) is a form of P9.

However, we can be more precise. Since d = 3, the k-central simple
k-algebra A associated to X is cyclic [KMRT98, Theorem 19.2]. If A
is split, then so is Hilbtw

3t (X/k). Otherwise, A is a division k-algebra
and, by part (2) above, there is a k-rational point Hilbtw

3t (X/k)(k) ̸= ∅.
Hence Ell3(X) = Hilbtw

3t (X/k)
∼= P9 in this case too. (Alternatively,

one can avoid the use of (2) by using Bertini’s theorem).
So we can assume d > 3. Let U ′ ⊂ Hilbtw

dt (X/k)×k k be the open set
consisting of all smooth and connected curves of degree d and genus 1.
Write U for the image of U ′ inside Hilbtw

dt (X/k). Since d > 3, it follows
from [Ein86, Theorem 8] that U ′, and hence also U ⊂ Elld(X), is open
and irreducible. We’ll show that U is dense in Elld(X); this will prove
the first claim since U ′ = U ×k k.

Let V be an irreducible component of Elld(X). Since the generic fiber
ψ−1
X (ηV ) is smooth and geometrically connected, there is an open subset

W ⊂ V such that for any point x inW , the curve ψ−1
X (x) is smooth (see

[Gro67, Proposition 17.7.11]) and geometrically irreducible (by [Sta19,
Tag 0559]) of degree d by assumption and, by Remark 3.6, of genus 1.
In particular, we have W ⊂ U showing that U is (topologically, but
possibly not scheme-theoretically) dense in Elld(X).

The dimension of Elld(X) can be determined geometrically, i.e. over
an algebraic closure, and this is done in [Ein86, Theorem 8]. Essentially,
if C ⊂ Xk is smooth of degree d and genus 1 then one can compute

h0(C,NC/Xk
) = d2 and h1(C,NC/Xk

) = 0

using the normal bundle sequence (and the Euler sequence for Xk).
This shows both that dim(Elld(X)) ≤ d2, from Corollary 2.9 (1), and

https://stacks.math.columbia.edu/tag/0C4J
https://stacks.math.columbia.edu/tag/0559
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that dim(Elld(X)) ≥ d2, from Corollary 2.9 (3); moreover this shows
that Elld(X) is smooth along U . □

Remark 4.4. The proof of (2) in Proposition 4.3 above is an extension
of an argument due to Jason Starr, cf. [Sta17]. There Starr’s goal is to
use the fact that V defines a smooth k-rational point on Hilbtw

nt (X/k)
to construct a smooth genus 1 curve on any Severi–Brauer variety X
defined over a large (also called ample) field k (e.g. a p-special field or
the fraction field of a Henselian DVR).

We can elaborate on Starr’s result in the setting of Proposition 4.3,
i.e. when A is a division k-algebra satisfying the assumptions of (2).
Indeed, the scheme Elln(X) is projective so we can construct a smooth
curve E with a k-rational point mapping to the k-point x associated to
the n-gon V constructed in the proof of Proposition 4.3 (2) as follows.

Let y be any point of Elln(X) whose associated subscheme C ⊂ X
is a smooth geometrically connected curve of genus 1. Let I = {x, y}.
Consider the blowup BlI(Elln(X)) with center the points I ⊂ Elln(X).
Since Elln(X) is projective, there is some embedding of the blowup
BlI(Elln(X)) ⊂ PM . A general linear section of the correct codimension
intersects BlI(Elln(X)) in a curve (smooth near x) by Bertini’s theorem
[Jou83, Théorème 6.10 et Corollaire 6.11]. A general section of the same

codimension intersects the exceptional divisor Pn2−1 ⊂ BlI(Elln(X))
over x in a k-rational point and the exceptional divisor over y in some
number of points. So we can choose a section E ′ ⊂ BlI(Elln(X)) doing
all three things at once. The normalization E of E ′ is a curve with all
the stated properties.

Over a large (also called ample) field k, any irreducible curve having
a smooth k-rational point has infinitely many k-rational points. Thus
the curve E has infinitely many k-rational points and the image along
the composition of the normalization and blowdown

E → E ′ → BlI(Elln(X))→ Elln(X)

has nontrivial intersection with the open subset of Elln(X) consisting
of smooth and geometrically connected genus 1 curves.

Example 4.5. If A is a cyclic division k-algebra of index n, there are
lots of field extensions F/k where XF contains a smooth geometrically
connected curve of genus 1 and where the algebra AF has index n.
When n = pr is a power of a prime p, Remark 4.4 shows this holds
for a minimal p-special field F/k contained in an algebraic closure k/k.
When the index n is arbitrary one can instead use the field k((t)),
which is the fraction field of a Henselian DVR, and apply Remark 4.4.
The index remains n here since Ak((t)) specializes to A (Lemma A.1).
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One can also construct “generic” examples for an arbitrary division
algebra A of index n as follows. If n = p is prime, then one can first
replace the base field k by an extension F/k with AF a cyclic division
algebra of index p if necessary. Next, one again extends the base field
but now to the function field L = F (Ellp(XF )) of the scheme Ellp(XF ).
Since Ellp(XF ) has a smooth F -rational point by Proposition 4.3, the
algebra AL is nonsplit (hence of index p) by [GS17, Lemma 5.4.7].
The generic fiber ψ−1

XF
(ηEllp(XF )) is then a smooth and geometrically

connected genus 1 curve on XL.
If n is not prime, one can use [RTY08] to get a field extension F/k

with AF cyclic of index n and with the restriction Br(k) → Br(F )
an injection. Setting L = F (Elln(XF )) then, as above, XL contains a
smooth and geometrically connected curve of genus 1. In this situation
[GS17, Lemma 5.4.7] shows that the restriction Br(F ) → Br(L) is
an injection and Lemma A.1 below shows that AL remains index n
(actually, both statements can be obtained from Lemma A.1). Hence
also the extension of A to E = k(Elln(X)) has index n and XE contains
a smooth and geometrically connected curve of genus 1.

Example 4.6. Let n ≥ 3 be an integer and fix a divisor m ≥ 1 of n.
Set G = SLn/µm to be the quotient of the special linear group by the
sub-group scheme of mth roots of unity. Fix a faithful representation
G → GLN for some N ≫ 0 and let π : GLN → GLN/G be the
quotient. If P ⊂ G is a parabolic subgroup such that P\G ∼= Pn−1,
then π is equivariant for the right-action of P and the quotient by this
action yields a Severi–Brauer scheme π0 : P\GLN → GLN/G. One
can therefore consider the relative GLN/G-scheme Hilbtw

nt (π0) and, if
η is the generic point of the (smooth and geometrically irreducible)
scheme GLN/G, we can define the relative GLN/G-scheme Elln(π0) as
the scheme theoretic closure of Elln(π0 ×GLN/G η) inside Hilbtw

nt (π0).
The scheme Elln(π0) is proper and surjective over GLN/G and, for

any field extension F/k and for any F -point x ∈ (GLN/G)(F ), the fiber
Elln(π0) ×GLN/G x contains Elln(π0 ×GLN/G x) as a closed subscheme.
By [Sta19, Tag 0559], there is then an open subscheme W ⊂ GLN/G
such that for any x ∈ W (F ) there is an equality

Elln(π0)×GLN/G x ∼= Elln(π0 ×GLN/G x).

If the base field k is infinite, then the relative Severi–Brauer scheme
π0 is versal (cf. [GMS03, Ch. 1 §5]) in the sense that for any nonempty
open subscheme U ⊂ GLN/G, for any field extension F/k, and for any
Severi–Brauer variety X associated to an F -central simple F -algebra
A with deg(A) = n and exp(A) dividing m, there exists an F -point x ∈

https://stacks.math.columbia.edu/tag/0559
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U(F ) so that X ∼= π−1
0 (U)×U x. The scheme Elln(π0)×GLN/GW and its

universal family, considered overW , is similarly versal for geometrically
elliptic normal curves on Severi–Brauer varieties.

Moreover, using Example 4.5, there exists a generic geometrically
elliptic normal curve Cgen

n,m on the base extension (Xgen
n,m)E of the generic

Severi–Brauer variety Xgen
n,m = π−1

0 (η), where E is the function field of
the scheme Elln(π0×GLN/G η). Fix any field F/k, fix a point x ∈ W (F )
corresponding to a Severi–Brauer variety X, and fix a geometrically
elliptic normal curve C ⊂ X. The point sx in S = Elln(π0 ×GLN/G x)
associated to the subscheme C ⊂ X is geometrically regular. Hence
there exists a sequence of DVRs (R0,m0), ..., (Rj(sx),mj(sx)) satisfying
the following conditions:

(1) Frac(R0) = F (Elln(π0)|W ) := E ′,
(2) Ri/mi

∼= Frac(Ri+1)
(3) Rj(sx)/mj(sx)

∼= F (sx).

There are also smooth Spec(Ri)-schemes, gotten by base change of the
universal family, which at one end gives Cgen

n,m ×E E
′ and the other C.

In this way the generic geometrically elliptic normal curve specializes
to any other geometrically elliptic normal curve in any Severi–Brauer
variety defined over any field extension of k.

Recall that the period per(C) of a smooth, proper, and geometrically
integral curve C/k is the smallest integer m ≥ 1 so that PicmC/k(k) ̸= ∅.
Equivalently, the period of C/k is the order of the element [Pic1C/k]

inside the first Galois cohomology group H1(k,Pic0C/k).
Recall also that the index ind(C) of C is the unique positive integer

generating the image of the degree map deg : CH0(C) → Z. We have
that per(C) divides ind(C) and if the genus of C satisfies g(C) = 1,
then ind(C) divides per(C)2, see [Lic69, Theorem 8]. In the following
theorem we keep the notation of Example 4.6 (in particular, the base
field k is assumed to be infinite).

Theorem 4.7. Let n ≥ 3 be an integer, and let m > 1 be a divisor of
n such that n and m have the same prime factors (i.e. m | n | m∞).
Assume, additionally, that n is not divisible by the characteristic of k.
Then the generic geometrically elliptic normal curve Cgen

n,m above has
index ind(Cgen

n,m) = nm and per(Cgen
n,m) = n.

Remark 4.8. Let Agen
n,m be the central simple k(η)-algebra associated

to the generic Severi–Brauer variety Xgen
n,m. If n = st is a factorization

by integers s and t such that gcd(t,m) = 1 and s and m share the same
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prime factors, then

deg(Agen
n,m) = n, ind(Agen

n,m) = s, and exp(Agen
n,m) = m.

So the assumptions on n and m in Theorem 4.7 describe, equivalently,
exactly those cases where Agen

n,m is a division algebra.

Proof. We first deal with the case when n = m. Since Cgen
n,n embeds

as a geometrically elliptic normal curve in a Severi–Brauer variety of
dimension n− 1, we find per(Cgen

n,n ) divides n. To prove per(Cgen
n,n ) = n,

it therefore suffices to show ind(Cgen
n,n ) = n2.

Because of our assumption that the characteristic of the base field
k does not divide n, we can find a field extension F/k and a smooth,
proper, and geometrically integral F -curve C of genus g(C) = 1 with
ind(C) = n2 and per(C) = n. (By the remarks at the end of §4 in
[LT58], one can take F = k̄((t1))((t2)) for an algebraic closure k̄ of k).
After base extension from k to F , it follows that (Cgen

n,n )E′ specializes
(along a sequence of DVRs) to C as above; here E ′ is the function field
of Elln(π0×k F ) as before. Hence, by [Ful98, Proposition 20.3 (a)], the
index ind(Cgen

n,n ) is divisible by n2 which implies that it actually is n2.
When n ̸= m, we can similarly argue by specialization. In this case,

we still have per(Cgen
n,m) divides n since Cgen

n,m embeds in a Severi–Brauer
variety of dimension n−1 as a geometrically elliptic normal curve. Since
n is indivisible by the characteristic of k, we can construct (see Lemma
4.9 below) a smooth, proper, and geometrically integral curve C over a
field extension F/k with per(C) = ind(C) = n. This curve C embeds
as a geometrically elliptic normal curve on the trivial Severi–Brauer
variety Pn−1

F , which is associated to a central simple F -algebra of degree
n and exponent dividing m trivially. Hence we can specialize (Cgen

n,m)E′

to C along a sequence of DVRs; here E ′ = F (Elln(π0 ×k F )). As each
relative curve that appears over a DVR in this process is projective,
smooth, and has geometrically integral fibers, we can consider their
associated Picard schemes [Kle05, Theorem 4.8]. In this way we can
also specialize from Picd(Cgen

n,m)E′/E′
∼= PicdCgen

n,m/E ×E E ′ to PicdC/F , for

each integer d dividing n, along a sequence of DVRs. Since the period
can only decrease when extending the base field, we can apply [Ful98,
Proposition 20.3 (a)] to show that per(Cgen

n,m) = n as claimed.
To compute the index of Cgen

n,m, we also use a specialization argument.
Let A be the central simple E-algebra corresponding to (Xgen

n,n )E and
let X = SB(A⊗m). Since (Cgen

n,n )E(X) sits on the Severi–Brauer variety
(Xgen

n,n )E(X), which is associated to the division algebra AE(X) of index n
and exponent m by [SVdB92, Theorem 2.1], we can specialize (Cgen

n,m)E′

to this curve along a sequence of DVRs; E ′ = E(X)(Elln(π0×kE(X))).
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We show in Lemma 4.10 below that the curve (Cgen
n,n )E(X) has index nm.

Thus, using [Ful98, Proposition 20.3 (a)] again, we get ind(Cgen
n,m) ≥ nm.

However, it’s possible to see that we must also have ind(Cgen
n,m) ≤ nm

as we now explain.
Indeed, if B is the central simple k(η)-algebra associated to Xgen

n,m

then B has index n and exponent m. If E = k(Elln(π0)) is the given
function field, then (Xgen

n,m)E is associated to the algebra BE which still
has index ind(BE) = n and exponent exp(BE) = m as the restriction
Br(k(η)) → Br(E) is an injection (see Example 4.5). If H is a divisor
of (Xgen

n,m)E of degree exp(BE) = m then

[Cgen
n,m ∩H] = [Cgen

n,m][H] = m[p]

holds in CH0((X
gen
n,m)E) for some point p of degree ind(BE) = n. Now

the left hand side of this equation has degree some multiple of the index
of Cgen

n,m whereas the right hand side has degree nm. □

We needed two lemmas for the above proof. The first of these lemmas
constructs curves of equal period and index over an extension of k. The
proof below is adapted from [use].

Lemma 4.9. Let n ≥ 1 be an integer not divisible by the characteristic
of k. Let k̄ be a fixed algebraic closure of k. Write F = k̄((t)) for the
field of formal Laurent series in t over k̄. Then there exists a smooth
and proper genus one curve C/F with per(C) = ind(C) = n.

Proof. Let E/k be any elliptic curve. We claim that there exists an
element x ∈ H1(F,EF ) having exact order n. Using the correspondence
between this Galois cohomology group and the Weil–Châtelet group for
EF , the element x corresponds to an EF -torsor C/F having period n.
By [Lic68, Theorem 1], the curve C also has index n.
The Kummer sequence associated to the multiplication-by-n map on

EF yields the exact sequence

(8) 0→ EF (F )/nEF (F )→ H1(F,EF [n])→ H1(F,EF )[n]→ 0

where EF [n] is the subgroup scheme of n-torsion points of EF . Since
n is not divisible by the characteristic of k, and since E is defined over
k, there exists an isomorphism of group schemes EF [n] ∼= (Z/nZ)⊕2.
Since F admits a cyclic Galois extension of degree n (i.e. F (t1/n)), there
exists an element z ∈ H1(F,EF [n]) of exact order n.

We claim that the group EF (F )/nEF (F ) = 0 so that, by (8), there
exists an element x of order n as desired (the image of z, for example).
Let R = k̄[[t]]. The restriction ER(R) → EF (F ) is an isomorphism
due to the valuative criterion for properness, so it suffices to show that
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ER(R) is n-divisible. Since E is finitely presented over k and we have
that R = lim←−m

R/(tm), there is an isomorphism

lim−→
m

ER/(tm)(R/(t
m)) ∼= lim−→

m

ER(R/(t
m)) ∼= ER(R).

We’ll show that ER/(tm)(R/(t
m)) is n-divisible by induction on m.

When m = 1, the group Ek̄(k̄) is divisible as E is an elliptic curve.
Now assume ER/(tm)(R/(t

m)) is n-divisible for some m ≥ 1. From the
restriction we get an exact sequence

0→ V → ER(R/(t
m+1))→ ER(R/(t

m))→ 0

with surjectivity on the right by formal smoothness. Here the kernel
V is a k̄-vector space which is n-divisible since the characteristic of k
doesn’t divide n. It follows that ER(R/(t

m+1)) = ER/(tm+1)(R/(t
m+1))

is n-divisible as well. □

The second lemma provides an index reduction formula for the generic
curve Cgen

n,n .

Lemma 4.10. Let n ≥ 3 be an integer not divisible by the characteristic
of the base field k and fix a divisor m ≥ 1 of n sharing the same prime
factors as n if m > 1. Let A be the central simple E-algebra associated
to the Severi–Brauer variety (Xgen

n,n )E. Let X = SB(A⊗m).
Then the generic geometrically elliptic normal curve Cgen

n,n ⊂ (Xgen
n,n )E

satisfies ind
(
(Cgen

n,n )E(X)

)
= nm. Moreover, if n/m is squarefree, then

the period of (Cgen
n,n )E(X) is per

(
(Cgen

n,n )E(X)

)
= n.

Proof. Let C = Cgen
n,n for the proof. Now there exists an exact sequence

(9) 0→ Pic(C ×X)→ PicC×X/E(E)
δ−→ Br(E)

which can be obtained in multiple ways, see for example [CK12, Proof
of Theorem 2.1] or [Kle05, Remark 2.11]. Important for us are the facts
that there is an equality

PicC×X/E(E) = Pic((C ×X)Es)Gal(Es/E),

where Es is a separable closure of E, and that there is a geometric
realization of the rightmost map of (9), see e.g. [Lie17, Theorem 3.4].

Using the above equality, we can compute PicC×X/E(E) explicitly.
There is an exact sequence of Gal(Es/E)-modules

0→ Pic(CEs)× Pic(XEs)→ Pic((C ×X)Es)→ H → 0

where H = Hom(
(
Pic0XEs/Es

)∨
,Pic0CEs/Es) and the leftmost nonzero

map is the pullback along the two projections, see [CTS21, §5.7.1].
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Note that, as X is a Severi–Brauer variety, we have H = 0 so that

PicC×X/E(E) ∼= (Pic(CEs)× Pic(XEs))Gal(Es/E) ∼= PicC/E(E)× Z
where a generator in the second component is given by the class of the
line bundle O(1) on XEs ∼= Pn−1

Es . Note that O(1) maps to [A⊗m] in
the Brauer group Br(E) under the map δ.

Suppose an E-rational point in PicC×X/E(E) is given by the pair
x = (L,O(−ℓ)). Then x comes from a line bundle on C ×X only if its
image in Br(E) is trivial, i.e. if there is an equality

0 = δ(L)− [A⊗mℓ].

Since C has an E-rational divisor of degree n2, whose image in Br(E) is
trivial, we can translate such an x to a pair where the first component
has degree 0 < d = deg(L) ≤ n2. We can even assume d > 1 since
C ∼= Pic1C/E has no E-rational points.

Since C has genus g(C) = 1, any line bundle representing the point
L on PicdC/E(E) is globally generated and thus defines a morphism

φ : C → P

where P is a Severi–Brauer variety with class [P ] = δ(L) = [A⊗mℓ] in
Br(E) by [Lie17, Theorem 3.4]. If D is a Weil divisor on P of degree
e = exp(A⊗mℓ), then the zero-cycle [C ∩ D] ∈ CH0(C) has degree de
considered as a Weil divisor of C. Since ind(C) = n2, we must have n2

divides de. Since exp(A⊗mℓ) divides n/m, we get

n2 | de | d
( n
m

)
.

Hence nm divides d.
Now there is a commutative box (all faces commute)

Pic(C ×X) Pic((C ×X)Es)

Pic(CE(X)) Pic((CEs)Es(XEs ))

CH0(X) CH0(XEs)

Z Z

where all vertical arrows are pushforward morphisms, all other arrows
are pullbacks, and we’ve identified

CH0(Spec(E(X))) = Z = CH0(Spec(E
s(XEs))),
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see [Ful98, Proposition 1.7]. By localization [EKM08, Corollary 57.11],
all slanted arrows are surjective and the bottom square is trivially all
isomorphisms.

If L0 is a line bundle on CE(X) we can therefore lift it to a line bundle
on C × X which, over the separable closure Es/E is of the form x =
(L,O(−ℓ)) for a line bundle L on CEs with deg(L) a multiple of nm and
for some ℓ ∈ Z. By pushing forward to XEs and restricting to Es(XEs),
we see that deg(L0) = deg(L) is a multiple of nm. Conversely, taking
m-times the point of PicnC/E corresponding to the embedding C ⊂ Xgen

n,n

defines a degree nm line bundle on CE(X). Hence ind(CE(X)) = nm.
Finally, assume that n/m is squarefree. If the period of CE(X) is d,

then d divides n since the period of C was n. If d ̸= n, then there is a
prime p so that vp(d) ≤ vp(n)−1 where vp is the p-adic valuation. Now
we have d divides nm which divides d2 by the period/index relations.
However, if n/m is squarefree then vp(m) ≥ vp(n)− 1 so that

vp(nm) = vp(n) + vp(m) ≥ 2vp(n)− 1

while vp(d
2) = 2vp(d) ≤ 2vp(n)− 2. Hence d = n. □

Appendix A. On Azumaya algebras

Lemma A.1. Let R be a Noetherian regular local ring with maximal
ideal m, residue field k = R/m, and fraction field F . Suppose that A is
an Azumaya R-algebra. Then there is an inequality ind(Ak) ≤ ind(AF ).

Proof. We consider theR-schemesXm = SBm(A) which are étale forms
of the Grassmannian R-schemes GrR(m,n), where n is the square root
of the rank of A, and for varyingm. The F and k fibers of the structure
map over R are canonically

SBm(AF ) ∼= SBm(A)×R F and SBm(Ak) ∼= SBm(A)×R k,

which have an F -rational point, or a k-rational point respectively, if and
only if the index ind(AF ), or ind(Ak) respectively, divides m [Bla91,
Proposition 3]. We’ll show that the assumption R is regular guarantees
that SBm(Ak)(k) ̸= ∅ whenever SBm(AF )(F ) ̸= ∅.
For this, we first note that R admits a sequence of discrete valuation

rings R0, ..., Rt with maximal ideals m0, ...,mt for some t ≥ 0 with the
following properties:

(1) Frac(R0) = F ,
(2) Ri/mi

∼= Frac(Ri+1)
(3) Rt/mt

∼= k.
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One can take a regular sequence (a0, ..., at−1) of generators for m and
define Ri = (R/(a0, ..., ai−1))(ai) (cf. [Sta19, Tag 00NQ, Tag 0AFS]).
Now the valuative criterion for properness [Har66, Theorem 4.7] shows

(Xm)Ri
(Frac(Ri)) ̸= ∅ =⇒ (Xm)Ri+1

(Frac(Ri+1)) ̸= ∅.

One can conclude by induction. □

Example A.2. The assumption that R is regular cannot be dropped
from the statement of Lemma A.1. Here’s an example from [Ma22, §4].
Fix a field k. Let X/k be any Severi–Brauer variety having X(k) = ∅.
Let x ∈ X be a closed point. Consider the pushout X̃ in the cocartesian
diagram below.

x Spec(k)

X X̃

Let x̃ ∈ X̃ denote the canonical (singular) k-rational point of X̃ and
OX̃,x̃ the local ring. If A is the central simple algebra associated to X,
then the Azumaya algebra A⊗kOX̃,x̃ is split over the generic point and
nontrivial over the closed point by construction.
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