Corrections to: Codimension 2 cycles on Severi-Brauer varieties and decomposability
In Example 4.3 it's claimed that for any odd prime p and for any integers $0<b \leq a$ one can find central simple k-algebras $D_{0}, D_{1}, \ldots, D_{a-b}$ over the field $k=\mathbb{Q}$ satisfying the following four properties:
(1) $\operatorname{ind}\left(D_{0}\right)=\exp \left(D_{0}\right)=p^{b}$
(2) $\operatorname{ind}\left(D_{i}\right)=\exp \left(D_{i}\right)=p$ for all $i>1$
(3) $\operatorname{ind}\left(D_{0} \otimes D_{1} \otimes \cdots \otimes D_{a-b}\right)=p^{a}$
(4) $\exp \left(D_{0} \otimes D_{1} \otimes \cdots \otimes D_{a-b}\right)=p^{b}$.

This claim is then used, in both the abstract and in Example 4.3, to show that there exists a central division \mathbb{Q}-algebra A of index n and exponent m, for any pair of positive odd integers (n, m) with m dividing n and with m and n sharing the same prime factors, such that each of the primary algebra factors of A admits a decomposition like the above. However, over \mathbb{Q}, every division algebra has equal index and exponent [Rei03, Theorem $32.19]$ so that (3) and (4) can not both hold if $a \neq b$.

Examples of algebras $D_{0}, D_{1}, \ldots, D_{a-b}$ satisfying the properties (1) - (4) above do exist over extensions of \mathbb{Q}, however. To see this, let $k=\mathbb{Q}\left(\zeta_{p^{b}}\right)\left(x_{0}, y_{0}, \ldots, x_{a-b}, y_{a-b}\right)$ where $\zeta_{p^{b}}$ is a primitive p^{b} th root of unity. For any $1 \leq j \leq b$, let $\left(x_{i}, y_{i}\right)_{p^{j}}$ be the symbol algebra over k with generators $1, u_{i}, v_{i}$ and relations

$$
u_{i}^{p^{j}}=x_{i}, \quad v_{i}^{p^{j}}=y_{i}, \quad \text { and } \quad u_{i} v_{i}=\zeta_{p^{b}}^{p^{b-j}} v_{i} u_{i} .
$$

Then, the algebras

$$
D_{0}=\left(x_{0}, y_{0}\right)_{p^{b}}, D_{1}=\left(x_{1}, y_{1}\right)_{p}, \ldots, D_{a-b}=\left(x_{a-b}, y_{a-b}\right)_{p}
$$

have the specified properties (1) - (4) by [TW87, Example 3.6 and Theorem 4.7 (i)].
For the general case, let (n, m) be a pair of positive odd integers with m dividing n and with m and n having the same prime factors. Let

$$
m=p_{1}^{b_{1}} \cdots p_{r}^{b_{r}} \quad \text { and } \quad n=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}
$$

be primary factorizations of m, n so that p_{i} is prime and $0<b_{i} \leq a_{i}$ for each $1 \leq i \leq r$. For each $1 \leq i \leq r$, let $\xi_{i}=\zeta_{p^{b_{i}}}$ be a $p^{b_{i}}$ th primitive root of unity and let ζ_{m} be an m th primitive root of unity. Consider the transcendental field extension of $\mathbb{Q}\left(\zeta_{m}\right)$,

$$
k=\mathbb{Q}\left(\zeta_{m}\right)\left(x_{0}^{(1)}, y_{0}^{(1)}, \ldots, x_{a_{1}-b_{1}}^{(1)}, y_{a_{1}-b_{1}}^{(1)}, \ldots, x_{0}^{(r)}, y_{0}^{(r)}, \ldots, x_{a_{r}-b_{r}}^{(r)}, y_{a_{r}-b_{r}}^{(r)}\right)
$$

For any $1 \leq i \leq r$, for any $0 \leq j \leq a_{i}-b_{i}$, and for any $1 \leq l \leq b_{i}$, let $\left(x_{j}^{(i)}, y_{j}^{(i)}\right)_{p_{i}^{l}}$ be the symbol algebra with generators $1, u_{j}, v_{j}$ and relations

$$
u_{j}^{p_{i}^{l}}=x_{j}^{(i)}, \quad v_{j}^{p_{i}^{l}}=y_{j}^{(i)}, \quad \text { and } \quad u_{j} v_{j}=\xi_{i}^{p_{i}^{p_{i}-l}} v_{j} u_{j} .
$$

Finally, the algebra

$$
A=\bigotimes_{i=1}^{r} A_{i} \quad \text { where } \quad A_{i}=\left(x_{0}^{(i)}, y_{0}^{(i)}\right)_{p_{i}^{b_{i}}} \otimes \cdots \otimes\left(x_{a_{i}-b_{i}}^{(i)}, y_{a_{i}-b_{i}}^{(i)}\right)_{p_{i}}
$$

has the desired properties, again by [TW87, Example 3.6 and Theorem 4.7 (i)].

References

[Rei03] I. Reiner, Maximal orders, London Mathematical Society Monographs. New Series, vol. 28, The Clarendon Press, Oxford University Press, Oxford, 2003, Corrected reprint of the 1975 original, With a foreword by M. J. Taylor. MR 1972204
[TW87] J.-P. Tignol and A. R. Wadsworth, Totally ramified valuations on finite-dimensional division algebras, Trans. Amer. Math. Soc. 302 (1987), no. 1, 223-250. MR 887507

