THE ARITHMETIC GENUS OF A COMPLETE INTERSECTION CURVE

EOIN MACKALL

ABSTRACT. The purpose of this short note is to relate two formulas for the genus of a curve that can be realized as a complete intersection in some projective space.

Fix a field k. Without any loss of generality, one can suppose that k is algebraically closed throughout this note. Let X be a projective k-variety and choose an embedding

$$X \subset \mathbb{P}^n = \operatorname{Proj}(k[x_0, ..., x_n]).$$

We say that X is a complete intersection (with respect to this embedding) if X is the vanishing locus $X = V_+(f_1, ..., f_c)$ of $c = \operatorname{codim}(X, \mathbb{P}^n)$ homogeneous equations $f_1, ..., f_c$ of the coordinate ring $k[x_0, ..., x_n]$ that form a regular sequence for this ring.

When X is a complete intersection curve (i.e. $\dim(X) = 1$), the arithmetic genus of X has been calculated in [AS98, Corollary 2].

Theorem 0.1. Suppose that $X = V_+(f_1, ..., f_{n-1}) \subset \mathbb{P}^n$ is a complete intersection curve. Then the arithmetic genus g(X) of X equals

(no.1)
$$g(X) = \sum_{i=1}^{n-1} (-1)^{i+n-1} \left(\sum_{1 \le a_1 < \dots < a_i \le n-1} \begin{pmatrix} d_{a_1} + \dots + d_{a_i} - 1 \\ d_{a_1} + \dots + d_{a_i} - n - 1 \end{pmatrix} \right)$$

where for each $1 \leq i \leq n-1$ we write $d_i = \deg(f_i)$.

Briefly, the proof of Theorem 0.1 utilizes the fact that the Koszul complex gives a resolution for the structure sheaf of X by sums of twists of the tautological bundle on \mathbb{P}^n ; the Euler characteristic of X (and hence the arithmetic genus) can then be determined explicitly from the computation [Sta20, Tag 01XT] of the cohomology of these twists.

The purpose of this note is to prove the following simplification of formula (no.1).

Theorem 0.2. Suppose that $X = V_+(f_1, ..., f_{n-1}) \subset \mathbb{P}^n$ is a complete intersection curve. Then the arithmetic genus g(X) of X equals

(no.2)
$$g(X) = 1 + \frac{1}{2} (d_1 + \dots + d_{n-1} - n - 1) d_1 \dots d_{n-1}$$

where for each $1 \leq i \leq n-1$ we write $d_i = \deg(f_i)$.

Remark 0.3. If $X = H_1 \cap \cdots \cap H_{n-1}$ is the intersection of hypersurfaces $H_i \subset \mathbb{P}^n$ such that the sequence

$$H_1, \quad H_1 \cap H_2, \quad H_1 \cap H_2 \cap H_3, \quad \dots, \quad H_1 \cap \dots \cap H_{n-1}$$

consists of smooth schemes, then Theorem 0.2 can be proved using the adjunction formula and induction; note that X is not assumed smooth, or even reduced, in Theorem 0.2.

Date: May 11, 2020.

²⁰¹⁰ Mathematics Subject Classification. 14H99; 14F05.

Key words and phrases. arithmetic genus; complete intersections.

Before giving the proof, we make some initial observations. Consider the following set of points $S_{>0}^{n-1} \subset \mathbb{A}_{\mathbb{Q}}^{n-1}(\mathbb{Z})$ consisting of tuples of integers with positive coordinates

(S0)
$$S_{>0}^{n-1} = \{ (d_1, ..., d_{n-1}) : d_i \in \mathbb{Z}, \quad d_1, ..., d_{n-1} > 0 \}.$$

The arithmetic genus g(X) from (no.2) agrees with the polynomial of $\mathbb{Q}[X_1, ..., X_{n-1}]$

(gn)
$$g_n(X_1, ..., X_{n-1}) := \sum_{i=1}^{n-1} (-1)^{i+n-1} \left(\frac{1}{n!} \sum_{a_1 < \dots < a_i} \prod_{j=1}^n (X_{a_1} + \dots + X_{a_i} - j) \right)$$

evaluated at the corresponding point of $S_{>0}^{n-1}$. Because of the following lemma, we'll often work with the latter description of the arithmetic genus.

Lemma 0.4. Fix an integer $n \geq 2$. Let $V \subset \mathbb{A}_{\mathbb{Q}}^{n-1}$ be an arbitrary closed subvariety. Then there is a containment $S_{>0}^{n-1} \subset V$ if and only if $V = \mathbb{A}_{\mathbb{Q}}^{n-1}$. In particular, if a polynomial $f(X_1, ..., X_{n-1}) \in \mathbb{Q}[X_1, ..., X_{n-1}]$ vanishes on $S_{>0}^{n-1}$, then $f(X_1, ..., X_{n-1}) = 0$.

Proof. Let $V = V(f_1, ..., f_m)$ be the affine variety defined as the vanishing locus of some nonconstant polynomials $f_1, ..., f_m \in \mathbb{Q}[X_1, ..., X_n]$. We'll show that there is a point of $S_{>0}^{n-1}$ not contained in V; to do this it suffices to work with any of the hypersurfaces $V(f_i)$, and without loss of any generality, we'll assume V = V(f). Since \mathbb{Q} is infinite, there is a point $p \in \mathbb{A}_{\mathbb{Q}}^{n-1}(\mathbb{Q})$ outside of V; we can also assume that p has all positive coordinates. Let ℓ be the line connecting p and the origin. Then the restriction of f to ℓ has finitely many zeros and ℓ intersects $S_{>0}^{n-1}$ infinitely often. \Box

Lemma 0.5. Let $n \ge 3$ be an integer. Then $g_n(1, X_2, ..., X_{n-1}) = g_{n-1}(X_2, ..., X_{n-1})$.

Proof. Identify $S_{>0}^{n-1}$ with the intersection $S_{>0}^n \cap V(X_1 - 1) \subset \mathbb{A}^n_{\mathbb{Q}}$, i.e. with the restriction of $S_{>0}^n$ to the hyperplane where $X_1 = 1$. In this case, $g_n(1, X_2, ..., X_{n-1}) - g_{n-1}(X_2, ..., X_{n-1})$ vanishes on every point of $S_{>0}^{n-1}$, as they both compute the arithmetic genus. Applying lemma 0.4 gives the result.

Lemma 0.6. Keep notation as in Lemma 0.7. Then there is an equality

$$g_n(X_1+1, X_2, ..., X_{n-1}) = g_n(X_1, X_2, ..., X_{n-1}) + \sum_{i=1}^{n-1} (-1)^{i+n-1} \left(\frac{1}{(n-1)!} \sum_{1 < a_2 < \dots < a_i} \prod_{j=1}^{n-1} (X_1 + \dots + X_{a_i} - j) \right)$$

as elements of $\mathbb{Q}[X_1, ..., X_{n-1}]$.

Proof. Restricted to the set $S_{>0}^{n-1}$ of (S0), the polynomial $g_n(X_1, ..., X_{n-1})$ agrees with the function

$$g'_{n}(X_{1},..,X_{n-1}) := \sum_{i=1}^{n-1} (-1)^{i+n-1} \left(\sum_{1 \le a_{1} < \dots < a_{i} \le n-1} \begin{pmatrix} X_{a_{1}} + \dots + X_{a_{i}} - 1 \\ X_{a_{1}} + \dots + X_{a_{i}} - n - 1 \end{pmatrix} \right).$$

Because of the recursive formula for binomial coefficients,

$$\binom{m}{k} = \binom{m-1}{k-1} + \binom{m-1}{k}$$

the function $g'_n(X_1, ..., X_{n-1})$ satisfies the equality

$$g'_{n}(d_{1}+1, d_{2}, ..., d_{n-1}) = g'_{n}(d_{1}, d_{2}, ..., d_{n-1}) + \sum_{i=1}^{n-1} (-1)^{i+n-1} \left(\sum_{1 < a_{2} < \dots < a_{i}} \binom{d_{1} + \dots + d_{a_{i}} - 1}{d_{1} + \dots + d_{a_{i}} - n} \right)$$

for any point $(d_1, ..., d_{n-1})$ of $S_{>0}^{n-1}$. In other words, the polynomial

$$g_n(X_1+1, X_2, \dots, X_{n-1}) - g_n(X_1, X_2, \dots, X_{n-1}) - \sum_{i=1}^{n-1} (-1)^{i+n-1} \left(\frac{1}{(n-1)!} \sum_{1 < a_2 < \dots < a_i} \prod_{j=1}^{n-1} (X_1 + \dots + X_{a_i} - j) \right)$$

nishes restricted to $S_{>0}^{n-1}$: the claim follows from Lemma 0.4.

vanishes restricted to $S_{>0}^{n-1}$; the claim follows from Lemma 0.4.

The proof of Theorem 0.2 is dependent on the following lemma.

Lemma 0.7. For any $n \geq 2$, there's an equality

$$g_n(X_1, ..., X_{n-1}) = 1 + X_1 \cdots X_{n-1} h_n(X_1, ..., X_{n-1})$$

for some polynomial $h_n(X_1, ..., X_{n-1}) \in \mathbb{Q}[X_1, ..., X_{n-1}]$ with

$$h_n(X_1, ..., X_{n-1}) = a_1 X_1 + \dots + a_{n-1} X_{n-1} + c$$

for some $a_1, \ldots, a_{n-1}, c \in \mathbb{Q}$.

Proof. The claim is clear when n = 2 so assume $n \ge 3$. We'll use the recursive formula

$$g_n(X_1+1, X_2, \dots, X_{n-1}) = g_n(X_1, X_2, \dots, X_{n-1}) + \sum_{i=1}^{n-1} (-1)^{i+n-1} \left(\frac{1}{(n-1)!} \sum_{1 < a_2 < \dots < a_i} \prod_{j=1}^{n-1} (X_1 + \dots + X_{a_i} - j) \right).$$

After setting $X_1 = 0$ in the above recursion one gets the equality

$$g_n(1, X_2, ..., X_{n-1}) = g_n(0, X_2, ..., X_{n-1}) - 1 + g_{n-1}(X_2, ..., X_{n-1}).$$

Since there's also an equality $g_n(1, X_2, ..., X_{n-1}) = g_{n-1}(X_2, ..., X_{n-1})$ by Lemma 0.5, it follows that

$$g_n(0, X_2, ..., X_{n-1}) - 1 = 0.$$

As $g_n(X_1, ..., X_{n-1})$ is symmetric in the variables X_i , it follows X_i divides $g_n(X_1, ..., X_{n-1}) - 1$ for each $1 \leq i \leq n-1$, which proves the first part of the lemma that there's an equality

$$g_n(X_1, ..., X_{n-1}) = 1 + X_1 \cdots X_{n-1} h_n(X_1, ..., X_{n-1})$$

for some polynomial $h_n(X_1, ..., X_{n-1}) \in \mathbb{Q}[X_1, ..., X_{n-1}].$

Now we show that $h_n(d_1, ..., d_{n-1})$ as defined above is linear of the given form. To do this, we work with the individual summands

(FF)
$$\frac{1}{n!} \prod_{j=1}^{n} (X_{a_1} + \dots + X_{a_i} - j).$$

Subtracting 1 from $g_n(X_1, ..., X_{n-1})$ and dividing the result by $X_1 \cdots X_{n-1}$ is a polynomial in $\mathbb{Q}[X_1, ..., X_{n-1}]$ so, after expanding any of the summands (FF) and dividing by $X_1 \cdots X_{n-1}$, all monomials with nontrivial denominator must vanish after summing over all other terms with the same denominator. This leaves just the last term of the sum from (gn), when i = n - 1, as a contributing factor to $h_n(X_1, ..., X_{n-1})$. Expanding this term shows

$$\frac{1}{n!} \prod_{j=1}^{n} (X_1 + \dots + X_{n-1} - j) = \frac{1}{n!} \left((X_1 + \dots + X_{n-1})^n + (-1)^{n-1} \frac{n(n+1)}{2} (X_1 + \dots + X_{n-1})^{n-1} + L(X_1, \dots, X_{n-1}) \right)$$

where the summand $L(X_1, ..., X_{n-1})$ is comprised of terms of degree smaller than n-1, and doesn't contribute to the polynomial $h_n(X_1, ..., X_{n-1})$. After expanding $(X_1 + \cdots + X_{n-1})^n$, the monomial summands divisible by $X_1 \cdots X_{n-1}$ are multiples of $X_i(X_1 \cdots X_{n-1})$ for varying $1 \leq i \leq n$; after expanding $(X_1 + \cdots + X_{n_1})^{n-1}$, the monomial summands divisible by $X_1 \cdots X_{n-1}$ are multiples of $X_1 \cdots X_{n-1}$. As $h_n(X_1, ..., X_{n-1})$ is the polynomial that one gets after dividing the sum of these summands by $X_1 \cdots X_{n-1}$, this shows $h_n(X_1, ..., X_{n-1})$ is linear of the given form, as claimed.

Proof of Theorem 0.2. By Lemma 0.7, we have that

$$g_n(d_1, ..., d_{n-1}) = 1 + d_1 \cdots d_{n-1} h_n(d_1, ..., d_{n-1})$$

for a linear polynomial

 $h_n(d_1, \dots, d_{n-1}) = a_1 d_1 + \dots + a_{n-1} d_{n-1} + c.$

Note that, when n = 2, the equation (no.1) becomes

$$g_2(d_1) = \binom{d_1 - 1}{d_1 - 3} = \frac{(d_1 - 1)(d_1 - 2)}{2} = 1 + \frac{1}{2}(d_1 - 3)d_1$$

Hence, when $n \geq 3$, one finds

$$g_2(d_i) = g_n(1, ..., d_i, ..., 1) = 1 + d_i h_n(1, ..., d_i, ..., 1)$$

by setting $d_j = 1$ for all $j \neq i$. It follows that $a_i = 1/2$ for all $1 \leq i \leq n-1$. Finally, one can solve for c using the relation $0 = g_n(1, ..., 1)$ where $d_i = 1$ for all $1 \leq i \leq n-1$.

References

- [AS98] F. Arslan and S. Sertöz, Genus calculations of complete intersections, Comm. Algebra 26 (1998), no. 8, 2463–2471. MR 1627868
- [Sta20] The Stacks project authors, *The stacks project*, https://stacks.math.columbia.edu, 2020.

Email address: eoinmackall *at* gmail.com *URL*: www.eoinmackall.com