THE ARITHMETIC GENUS OF A COMPLETE INTERSECTION CURVE

EOIN MACKALL

Abstract

The purpose of this short note is to relate two formulas for the genus of a curve that can be realized as a complete intersection in some projective space.

Fix a field k. Without any loss of generality, one can suppose that k is algebraically closed throughout this note. Let X be a projective k-variety and choose an embedding

$$
X \subset \mathbb{P}^{n}=\operatorname{Proj}\left(k\left[x_{0}, \ldots, x_{n}\right]\right) .
$$

We say that X is a complete intersection (with respect to this embedding) if X is the vanishing locus $X=V_{+}\left(f_{1}, \ldots, f_{c}\right)$ of $c=\operatorname{codim}\left(X, \mathbb{P}^{n}\right)$ homogeneous equations f_{1}, \ldots, f_{c} of the coordinate ring $k\left[x_{0}, \ldots, x_{n}\right]$ that form a regular sequence for this ring.

When X is a complete intersection curve (i.e. $\operatorname{dim}(X)=1$), the arithmetic genus of X has been calculated in [AS98, Corollary 2].
Theorem 0.1. Suppose that $X=V_{+}\left(f_{1}, \ldots, f_{n-1}\right) \subset \mathbb{P}^{n}$ is a complete intersection curve. Then the arithmetic genus $g(X)$ of X equals

$$
\begin{equation*}
g(X)=\sum_{i=1}^{n-1}(-1)^{i+n-1}\left(\sum_{1 \leq a_{1}<\cdots<a_{i} \leq n-1}\binom{d_{a_{1}}+\cdots+d_{a_{i}}-1}{d_{a_{1}}+\cdots+d_{a_{i}}-n-1}\right) \tag{no.1}
\end{equation*}
$$

where for each $1 \leq i \leq n-1$ we write $d_{i}=\operatorname{deg}\left(f_{i}\right)$.
Briefly, the proof of Theorem 0.1 utilizes the fact that the Koszul complex gives a resolution for the structure sheaf of X by sums of twists of the tautological bundle on \mathbb{P}^{n}; the Euler characteristic of X (and hence the arithmetic genus) can then be determined explicitly from the computation [Sta20, Tag 01XT] of the cohomology of these twists.

The purpose of this note is to prove the following simplification of formula (no.1).
Theorem 0.2. Suppose that $X=V_{+}\left(f_{1}, \ldots, f_{n-1}\right) \subset \mathbb{P}^{n}$ is a complete intersection curve. Then the arithmetic genus $g(X)$ of X equals

$$
\begin{equation*}
g(X)=1+\frac{1}{2}\left(d_{1}+\cdots+d_{n-1}-n-1\right) d_{1} \cdots d_{n-1} \tag{no.2}
\end{equation*}
$$

where for each $1 \leq i \leq n-1$ we write $d_{i}=\operatorname{deg}\left(f_{i}\right)$.
Remark 0.3. If $X=H_{1} \cap \cdots \cap H_{n-1}$ is the intersection of hypersurfaces $H_{i} \subset \mathbb{P}^{n}$ such that the sequence

$$
H_{1}, \quad H_{1} \cap H_{2}, \quad H_{1} \cap H_{2} \cap H_{3}, \quad \ldots, \quad H_{1} \cap \cdots \cap H_{n-1}
$$

consists of smooth schemes, then Theorem 0.2 can be proved using the adjunction formula and induction; note that X is not assumed smooth, or even reduced, in Theorem 0.2.

[^0]Before giving the proof, we make some initial observations. Consider the following set of points $S_{>0}^{n-1} \subset \mathbb{A}_{\mathbb{Q}}^{n-1}(\mathbb{Z})$ consisting of tuples of integers with positive coordinates

$$
\begin{equation*}
S_{>0}^{n-1}=\left\{\left(d_{1}, \ldots, d_{n-1}\right): d_{i} \in \mathbb{Z}, \quad d_{1}, \ldots, d_{n-1}>0\right\} \tag{S0}
\end{equation*}
$$

The arithmetic genus $g(X)$ from (no.2) agrees with the polynomial of $\mathbb{Q}\left[X_{1}, \ldots, X_{n-1}\right]$

$$
\begin{equation*}
g_{n}\left(X_{1}, \ldots, X_{n-1}\right):=\sum_{i=1}^{n-1}(-1)^{i+n-1}\left(\frac{1}{n!} \sum_{a_{1}<\cdots<a_{i}} \prod_{j=1}^{n}\left(X_{a_{1}}+\cdots+X_{a_{i}}-j\right)\right) \tag{gn}
\end{equation*}
$$

evaluated at the corresponding point of $S_{>0}^{n-1}$. Because of the following lemma, we'll often work with the latter description of the arithmetic genus.

Lemma 0.4. Fix an integer $n \geq 2$. Let $V \subset \mathbb{A}_{\mathbb{Q}}^{n-1}$ be an arbitrary closed subvariety. Then there is a containment $S_{>0}^{n-1} \subset V$ if and only if $V=\mathbb{A}_{\mathbb{Q}}^{n-1}$. In particular, if a polynomial $f\left(X_{1}, \ldots, X_{n-1}\right) \in \mathbb{Q}\left[X_{1}, \ldots, X_{n-1}\right]$ vanishes on $S_{>0}^{n-1}$, then $f\left(X_{1}, \ldots, X_{n-1}\right)=0$.
Proof. Let $V=V\left(f_{1}, \ldots, f_{m}\right)$ be the affine variety defined as the vanishing locus of some nonconstant polynomials $f_{1}, \ldots, f_{m} \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$. We'll show that there is a point of $S_{>0}^{n-1}$ not contained in V; to do this it suffices to work with any of the hypersurfaces $V\left(f_{i}\right)$, and without loss of any generality, we'll assume $V=V(f)$. Since \mathbb{Q} is infinite, there is a point $p \in \mathbb{A}_{\mathbb{Q}}^{n-1}(\mathbb{Q})$ outside of V; we can also assume that p has all positive coordinates. Let ℓ be the line connecting p and the origin. Then the restriction of f to ℓ has finitely many zeros and ℓ intersects $S_{>0}^{n-1}$ infinitely often.
Lemma 0.5. Let $n \geq 3$ be an integer. Then $g_{n}\left(1, X_{2}, \ldots, X_{n-1}\right)=g_{n-1}\left(X_{2}, \ldots, X_{n-1}\right)$.
Proof. Identify $S_{>0}^{n-1}$ with the intersection $S_{>0}^{n} \cap V\left(X_{1}-1\right) \subset \mathbb{A}_{\mathbb{Q}}^{n}$, i.e. with the restriction of $S_{>0}^{n}$ to the hyperplane where $X_{1}=1$. In this case, $g_{n}\left(1, X_{2}, \ldots, X_{n-1}\right)-g_{n-1}\left(X_{2}, \ldots, X_{n-1}\right)$ vanishes on every point of $S_{>0}^{n-1}$, as they both compute the arithmetic genus. Applying lemma 0.4 gives the result.

Lemma 0.6. Keep notation as in Lemma 0.7. Then there is an equality

$$
\begin{aligned}
g_{n}\left(X_{1}+1, X_{2}, \ldots, X_{n-1}\right)= & g_{n}\left(X_{1}, X_{2}, \ldots, X_{n-1}\right) \\
& +\sum_{i=1}^{n-1}(-1)^{i+n-1}\left(\frac{1}{(n-1)!} \sum_{1<a_{2}<\cdots<a_{i}} \prod_{j=1}^{n-1}\left(X_{1}+\cdots+X_{a_{i}}-j\right)\right)
\end{aligned}
$$

as elements of $\mathbb{Q}\left[X_{1}, \ldots, X_{n-1}\right]$.
Proof. Restricted to the set $S_{>0}^{n-1}$ of (S0), the polynomial $g_{n}\left(X_{1}, \ldots, X_{n-1}\right)$ agrees with the function

$$
g_{n}^{\prime}\left(X_{1}, . ., X_{n-1}\right):=\sum_{i=1}^{n-1}(-1)^{i+n-1}\left(\sum_{1 \leq a_{1}<\cdots<a_{i} \leq n-1}\binom{X_{a_{1}}+\cdots+X_{a_{i}}-1}{X_{a_{1}}+\cdots+X_{a_{i}}-n-1}\right)
$$

Because of the recursive formula for binomial coefficients,

$$
\binom{m}{k}=\binom{m-1}{k-1}+\binom{m-1}{k}
$$

the function $g_{n}^{\prime}\left(X_{1}, \ldots, X_{n-1}\right)$ satisfies the equality
$g_{n}^{\prime}\left(d_{1}+1, d_{2}, \ldots, d_{n-1}\right)=g_{n}^{\prime}\left(d_{1}, d_{2}, \ldots, d_{n-1}\right)+\sum_{i=1}^{n-1}(-1)^{i+n-1}\left(\sum_{1<a_{2}<\cdots<a_{i}}\binom{d_{1}+\cdots+d_{a_{i}}-1}{d_{1}+\cdots+d_{a_{i}}-n}\right)$
for any point $\left(d_{1}, \ldots, d_{n-1}\right)$ of $S_{>0}^{n-1}$. In other words, the polynomial

$$
\begin{aligned}
g_{n}\left(X_{1}+1, X_{2}, \ldots, X_{n-1}\right)- & g_{n}\left(X_{1}, X_{2}, \ldots, X_{n-1}\right) \\
& -\sum_{i=1}^{n-1}(-1)^{i+n-1}\left(\frac{1}{(n-1)!} \sum_{1<a_{2}<\cdots<a_{i}} \prod_{j=1}^{n-1}\left(X_{1}+\cdots+X_{a_{i}}-j\right)\right)
\end{aligned}
$$

vanishes restricted to $S_{>0}^{n-1}$; the claim follows from Lemma 0.4.
The proof of Theorem 0.2 is dependent on the following lemma.
Lemma 0.7. For any $n \geq 2$, there's an equality

$$
g_{n}\left(X_{1}, \ldots, X_{n-1}\right)=1+X_{1} \cdots X_{n-1} h_{n}\left(X_{1}, \ldots, X_{n-1}\right)
$$

for some polynomial $h_{n}\left(X_{1}, \ldots, X_{n-1}\right) \in \mathbb{Q}\left[X_{1}, \ldots, X_{n-1}\right]$ with

$$
h_{n}\left(X_{1}, \ldots, X_{n-1}\right)=a_{1} X_{1}+\cdots+a_{n-1} X_{n-1}+c
$$

for some $a_{1}, \ldots, a_{n-1}, c \in \mathbb{Q}$.
Proof. The claim is clear when $n=2$ so assume $n \geq 3$. We'll use the recursive formula

$$
\begin{aligned}
g_{n}\left(X_{1}+1, X_{2}, \ldots, X_{n-1}\right)= & g_{n}\left(X_{1}, X_{2}, \ldots, X_{n-1}\right) \\
& +\sum_{i=1}^{n-1}(-1)^{i+n-1}\left(\frac{1}{(n-1)!} \sum_{1<a_{2}<\cdots<a_{i}} \prod_{j=1}^{n-1}\left(X_{1}+\cdots+X_{a_{i}}-j\right)\right) .
\end{aligned}
$$

After setting $X_{1}=0$ in the above recursion one gets the equality

$$
g_{n}\left(1, X_{2}, \ldots, X_{n-1}\right)=g_{n}\left(0, X_{2}, \ldots, X_{n-1}\right)-1+g_{n-1}\left(X_{2}, \ldots, X_{n-1}\right)
$$

Since there's also an equality $g_{n}\left(1, X_{2}, \ldots, X_{n-1}\right)=g_{n-1}\left(X_{2}, \ldots, X_{n-1}\right)$ by Lemma 0.5 , it follows that

$$
g_{n}\left(0, X_{2}, \ldots, X_{n-1}\right)-1=0 .
$$

As $g_{n}\left(X_{1}, \ldots, X_{n-1}\right)$ is symmetric in the variables X_{i}, it follows X_{i} divides $g_{n}\left(X_{1}, \ldots, X_{n-1}\right)-1$ for each $1 \leq i \leq n-1$, which proves the first part of the lemma that there's an equality

$$
g_{n}\left(X_{1}, \ldots, X_{n-1}\right)=1+X_{1} \cdots X_{n-1} h_{n}\left(X_{1}, \ldots, X_{n-1}\right)
$$

for some polynomial $h_{n}\left(X_{1}, \ldots, X_{n-1}\right) \in \mathbb{Q}\left[X_{1}, \ldots, X_{n-1}\right]$.
Now we show that $h_{n}\left(d_{1}, \ldots, d_{n-1}\right)$ as defined above is linear of the given form. To do this, we work with the individual summands

$$
\begin{equation*}
\frac{1}{n!} \prod_{j=1}^{n}\left(X_{a_{1}}+\cdots+X_{a_{i}}-j\right) \tag{FF}
\end{equation*}
$$

Subtracting 1 from $g_{n}\left(X_{1}, \ldots, X_{n-1}\right)$ and dividing the result by $X_{1} \cdots X_{n-1}$ is a polynomial in $\mathbb{Q}\left[X_{1}, \ldots, X_{n-1}\right]$ so, after expanding any of the summands (FF) and dividing by $X_{1} \cdots X_{n-1}$, all monomials with nontrivial denominator must vanish after summing over all other terms
with the same denominator. This leaves just the last term of the sum from (gn), when $i=n-1$, as a contributing factor to $h_{n}\left(X_{1}, \ldots, X_{n-1}\right)$. Expanding this term shows

$$
\begin{aligned}
& \frac{1}{n!} \prod_{j=1}^{n}\left(X_{1}+\cdots+X_{n-1}-j\right)= \\
& \quad \frac{1}{n!}\left(\left(X_{1}+\cdots+X_{n-1}\right)^{n}+(-1)^{n-1} \frac{n(n+1)}{2}\left(X_{1}+\cdots+X_{n-1}\right)^{n-1}+L\left(X_{1}, \ldots, X_{n-1}\right)\right)
\end{aligned}
$$

where the summand $L\left(X_{1}, \ldots, X_{n-1}\right)$ is comprised of terms of degree smaller than $n-1$, and doesn't contribute to the polynomial $h_{n}\left(X_{1}, \ldots, X_{n-1}\right)$. After expanding $\left(X_{1}+\cdots+X_{n-1}\right)^{n}$, the monomial summands divisible by $X_{1} \cdots X_{n-1}$ are multiples of $X_{i}\left(X_{1} \cdots X_{n-1}\right)$ for varying $1 \leq i \leq n$; after expanding $\left(X_{1}+\cdots+X_{n_{1}}\right)^{n-1}$, the monomial summands divisible by $X_{1} \cdots X_{n-1}$ are multiples of $X_{1} \cdots X_{n-1}$. As $h_{n}\left(X_{1}, \ldots, X_{n-1}\right)$ is the polynomial that one gets after dividing the sum of these summands by $X_{1} \cdots X_{n-1}$, this shows $h_{n}\left(X_{1}, \ldots, X_{n-1}\right)$ is linear of the given form, as claimed.
Proof of Theorem 0.2. By Lemma 0.7, we have that

$$
g_{n}\left(d_{1}, \ldots, d_{n-1}\right)=1+d_{1} \cdots d_{n-1} h_{n}\left(d_{1}, \ldots, d_{n-1}\right)
$$

for a linear polynomial

$$
h_{n}\left(d_{1}, \ldots, d_{n-1}\right)=a_{1} d_{1}+\cdots+a_{n-1} d_{n-1}+c
$$

Note that, when $n=2$, the equation (no.1) becomes

$$
g_{2}\left(d_{1}\right)=\binom{d_{1}-1}{d_{1}-3}=\frac{\left(d_{1}-1\right)\left(d_{1}-2\right)}{2}=1+\frac{1}{2}\left(d_{1}-3\right) d_{1} .
$$

Hence, when $n \geq 3$, one finds

$$
g_{2}\left(d_{i}\right)=g_{n}\left(1, \ldots, d_{i}, \ldots, 1\right)=1+d_{i} h_{n}\left(1, \ldots, d_{i}, \ldots, 1\right)
$$

by setting $d_{j}=1$ for all $j \neq i$. It follows that $a_{i}=1 / 2$ for all $1 \leq i \leq n-1$. Finally, one can solve for c using the relation $0=g_{n}(1, \ldots, 1)$ where $d_{i}=1$ for all $1 \leq i \leq n-1$.

References

[AS98] F. Arslan and S. Sertöz, Genus calculations of complete intersections, Comm. Algebra 26 (1998), no. 8, 2463-2471. MR 1627868
[Sta20] The Stacks project authors, The stacks project, https://stacks.math.columbia.edu, 2020.
Email address: eoinmackall at gmail.com
$U R L$: www.eoinmackall. com

[^0]: Date: May 11, 2020.
 2010 Mathematics Subject Classification. 14H99; 14F05.
 Key words and phrases. arithmetic genus; complete intersections.

