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Abstract. The purpose of this short note is to relate two formulas for the genus of a curve
that can be realized as a complete intersection in some projective space.

Fix a field k. Without any loss of generality, one can suppose that k is algebraically closed
throughout this note. Let X be a projective k-variety and choose an embedding

X ⊂ Pn = Proj(k[x0, ..., xn]).

We say that X is a complete intersection (with respect to this embedding) if X is the
vanishing locus X = V+(f1, ..., fc) of c = codim(X,Pn) homogeneous equations f1, ..., fc of
the coordinate ring k[x0, ..., xn] that form a regular sequence for this ring.

When X is a complete intersection curve (i.e. dim(X) = 1), the arithmetic genus of X has
been calculated in [AS98, Corollary 2].

Theorem 0.1. Suppose that X = V+(f1, ..., fn−1) ⊂ Pn is a complete intersection curve.
Then the arithmetic genus g(X) of X equals

(no.1) g(X) =
n−1∑
i=1

(−1)i+n−1

( ∑
1≤a1<···<ai≤n−1

(
da1 + · · ·+ dai − 1

da1 + · · ·+ dai − n− 1

))
where for each 1 ≤ i ≤ n− 1 we write di = deg(fi). �

Briefly, the proof of Theorem 0.1 utilizes the fact that the Koszul complex gives a resolution
for the structure sheaf of X by sums of twists of the tautological bundle on Pn; the Euler
characteristic of X (and hence the arithmetic genus) can then be determined explicitly from
the computation [Sta20, Tag 01XT] of the cohomology of these twists.

The purpose of this note is to prove the following simplification of formula (no.1).

Theorem 0.2. Suppose that X = V+(f1, ..., fn−1) ⊂ Pn is a complete intersection curve.
Then the arithmetic genus g(X) of X equals

(no.2) g(X) = 1 +
1

2
(d1 + · · ·+ dn−1 − n− 1) d1 · · · dn−1

where for each 1 ≤ i ≤ n− 1 we write di = deg(fi).

Remark 0.3. If X = H1 ∩ · · · ∩Hn−1 is the intersection of hypersurfaces Hi ⊂ Pn such that
the sequence

H1, H1 ∩H2, H1 ∩H2 ∩H3, . . . , H1 ∩ · · · ∩Hn−1

consists of smooth schemes, then Theorem 0.2 can be proved using the adjunction formula
and induction; note that X is not assumed smooth, or even reduced, in Theorem 0.2.
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Before giving the proof, we make some initial observations. Consider the following set of
points Sn−1

>0 ⊂ An−1
Q (Z) consisting of tuples of integers with positive coordinates

(S0) Sn−1
>0 = {(d1, ..., dn−1) : di ∈ Z, d1, ..., dn−1 > 0}.

The arithmetic genus g(X) from (no.2) agrees with the polynomial of Q[X1, ..., Xn−1]

(gn) gn(X1, ..., Xn−1) :=
n−1∑
i=1

(−1)i+n−1

(
1

n!

∑
a1<···<ai

n∏
j=1

(Xa1 + · · ·+ Xai − j)

)
evaluated at the corresponding point of Sn−1

>0 . Because of the following lemma, we’ll often
work with the latter description of the arithmetic genus.

Lemma 0.4. Fix an integer n ≥ 2. Let V ⊂ An−1
Q be an arbitrary closed subvariety. Then

there is a containment Sn−1
>0 ⊂ V if and only if V = An−1

Q . In particular, if a polynomial

f(X1, ..., Xn−1) ∈ Q[X1, ..., Xn−1] vanishes on Sn−1
>0 , then f(X1, ..., Xn−1) = 0.

Proof. Let V = V (f1, ..., fm) be the affine variety defined as the vanishing locus of some
nonconstant polynomials f1, ..., fm ∈ Q[X1, ..., Xn]. We’ll show that there is a point of Sn−1

>0

not contained in V ; to do this it suffices to work with any of the hypersurfaces V (fi), and
without loss of any generality, we’ll assume V = V (f). Since Q is infinite, there is a point
p ∈ An−1

Q (Q) outside of V ; we can also assume that p has all positive coordinates. Let ` be
the line connecting p and the origin. Then the restriction of f to ` has finitely many zeros
and ` intersects Sn−1

>0 infinitely often. �

Lemma 0.5. Let n ≥ 3 be an integer. Then gn(1, X2, ..., Xn−1) = gn−1(X2, ..., Xn−1).

Proof. Identify Sn−1
>0 with the intersection Sn

>0 ∩ V (X1− 1) ⊂ An
Q, i.e. with the restriction of

Sn
>0 to the hyperplane where X1 = 1. In this case, gn(1, X2, ..., Xn−1) − gn−1(X2, ..., Xn−1)

vanishes on every point of Sn−1
>0 , as they both compute the arithmetic genus. Applying

lemma 0.4 gives the result. �

Lemma 0.6. Keep notation as in Lemma 0.7. Then there is an equality

gn(X1 + 1, X2, ..., Xn−1) = gn(X1, X2, ..., Xn−1)

+
n−1∑
i=1

(−1)i+n−1

(
1

(n− 1)!

∑
1<a2<···<ai

n−1∏
j=1

(X1 + · · ·+ Xai − j)

)
as elements of Q[X1, ..., Xn−1].

Proof. Restricted to the set Sn−1
>0 of (S0), the polynomial gn(X1, ..., Xn−1) agrees with the

function

g′n(X1, .., Xn−1) :=
n−1∑
i=1

(−1)i+n−1

( ∑
1≤a1<···<ai≤n−1

(
Xa1 + · · ·+ Xai − 1

Xa1 + · · ·+ Xai − n− 1

))
.

Because of the recursive formula for binomial coefficients,(
m

k

)
=

(
m− 1

k − 1

)
+

(
m− 1

k

)
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the function g′n(X1, ..., Xn−1) satisfies the equality

g′n(d1+1, d2, ..., dn−1) = g′n(d1, d2, ..., dn−1)+
n−1∑
i=1

(−1)i+n−1

( ∑
1<a2<···<ai

(
d1 + · · ·+ dai − 1

d1 + · · ·+ dai − n

))
for any point (d1, ..., dn−1) of Sn−1

>0 . In other words, the polynomial

gn(X1 + 1, X2, ..., Xn−1)− gn(X1, X2, ..., Xn−1)

−
n−1∑
i=1

(−1)i+n−1

(
1

(n− 1)!

∑
1<a2<···<ai

n−1∏
j=1

(X1 + · · ·+ Xai − j)

)
vanishes restricted to Sn−1

>0 ; the claim follows from Lemma 0.4. �

The proof of Theorem 0.2 is dependent on the following lemma.

Lemma 0.7. For any n ≥ 2, there’s an equality

gn(X1, ..., Xn−1) = 1 + X1 · · ·Xn−1hn(X1, ..., Xn−1)

for some polynomial hn(X1, ..., Xn−1) ∈ Q[X1, ..., Xn−1] with

hn(X1, ..., Xn−1) = a1X1 + · · ·+ an−1Xn−1 + c

for some a1, ..., an−1, c ∈ Q.

Proof. The claim is clear when n = 2 so assume n ≥ 3. We’ll use the recursive formula

gn(X1 + 1, X2, ..., Xn−1) = gn(X1, X2, ..., Xn−1)

+
n−1∑
i=1

(−1)i+n−1

(
1

(n− 1)!

∑
1<a2<···<ai

n−1∏
j=1

(X1 + · · ·+ Xai − j)

)
.

After setting X1 = 0 in the above recursion one gets the equality

gn(1, X2, ..., Xn−1) = gn(0, X2, ..., Xn−1)− 1 + gn−1(X2, ..., Xn−1).

Since there’s also an equality gn(1, X2, ..., Xn−1) = gn−1(X2, ..., Xn−1) by Lemma 0.5, it
follows that

gn(0, X2, ..., Xn−1)− 1 = 0.

As gn(X1, ..., Xn−1) is symmetric in the variables Xi, it follows Xi divides gn(X1, ..., Xn−1)−1
for each 1 ≤ i ≤ n− 1, which proves the first part of the lemma that there’s an equality

gn(X1, ..., Xn−1) = 1 + X1 · · ·Xn−1hn(X1, ..., Xn−1)

for some polynomial hn(X1, ..., Xn−1) ∈ Q[X1, ..., Xn−1].
Now we show that hn(d1, ..., dn−1) as defined above is linear of the given form. To do this,

we work with the individual summands

(FF)
1

n!

n∏
j=1

(Xa1 + · · ·+ Xai − j).

Subtracting 1 from gn(X1, ..., Xn−1) and dividing the result by X1 · · ·Xn−1 is a polynomial in
Q[X1, ..., Xn−1] so, after expanding any of the summands (FF) and dividing by X1 · · ·Xn−1,
all monomials with nontrivial denominator must vanish after summing over all other terms
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with the same denominator. This leaves just the last term of the sum from (gn), when
i = n− 1, as a contributing factor to hn(X1, ..., Xn−1). Expanding this term shows

1

n!

n∏
j=1

(X1 + · · ·+ Xn−1 − j) =

1

n!

(
(X1 + · · ·+ Xn−1)

n + (−1)n−1
n(n + 1)

2
(X1 + · · ·+ Xn−1)

n−1 + L(X1, ..., Xn−1)

)
where the summand L(X1, ..., Xn−1) is comprised of terms of degree smaller than n− 1, and
doesn’t contribute to the polynomial hn(X1, ..., Xn−1). After expanding (X1 + · · ·+Xn−1)

n,
the monomial summands divisible by X1 · · ·Xn−1 are multiples of Xi(X1 · · ·Xn−1) for varying
1 ≤ i ≤ n; after expanding (X1 + · · · + Xn1)

n−1, the monomial summands divisible by
X1 · · ·Xn−1 are multiples of X1 · · ·Xn−1. As hn(X1, ..., Xn−1) is the polynomial that one
gets after dividing the sum of these summands by X1 · · ·Xn−1, this shows hn(X1, ..., Xn−1)
is linear of the given form, as claimed. �

Proof of Theorem 0.2. By Lemma 0.7, we have that

gn(d1, ..., dn−1) = 1 + d1 · · · dn−1hn(d1, ..., dn−1)

for a linear polynomial

hn(d1, ..., dn−1) = a1d1 + · · ·+ an−1dn−1 + c.

Note that, when n = 2, the equation (no.1) becomes

g2(d1) =

(
d1 − 1

d1 − 3

)
=

(d1 − 1)(d1 − 2)

2
= 1 +

1

2
(d1 − 3)d1.

Hence, when n ≥ 3, one finds

g2(di) = gn(1, ..., di, ..., 1) = 1 + dihn(1, ..., di, ..., 1)

by setting dj = 1 for all j 6= i. It follows that ai = 1/2 for all 1 ≤ i ≤ n − 1. Finally, one
can solve for c using the relation 0 = gn(1, ..., 1) where di = 1 for all 1 ≤ i ≤ n− 1. �
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