RATIONAL EQUIVALENCE OF CURVES ON A SEVERI-BRAUER VARIETY

EOIN MACKALL

Abstract

Let A be a central simple algebra over a field F and of odd index. We show that the torsion subgroup of the Chow group $\mathrm{CH}_{1}(X)$ of 1-cycles on the Severi-Brauer variety $X=\mathbf{S B}(A)$ is trivial if and only if any curve in X is rationally equivalent to a member of some collection of birationally equivalent curves on X.

1. Introduction

Chow groups of Severi-Brauer varieties have been of interest since they first appeared in the proof of the Merkurjev-Suslin norm residue isomorphism theorem [MS82]. In the proof of this theorem, the Chow groups of Severi-Brauer varieties associated to central division algebras of prime degree are shown to be torsion free.

Suslin later conjectured that the Chow groups of any Severi-Brauer variety were torsion free [Sus84, Remark 10.14 and Conjecture 24.6]. The first counterexample to this conjecture, a Severi-Brauer variety whose Chow ring contained nontrivial torsion, appeared in [Mer95]. Since then there have been a number of constructions of nontrivial torsion in the Chow groups of specific Severi-Brauer varieties [Kar95, Kar98, Kar17, Bae15, KM19, Mac20c].

All known examples of nontrivial torsion in the Chow groups of a Severi-Brauer variety occur in the Chow groups of cycles of reasonably large dimension. In this text, we study Chow groups of dimension one cycles on a Severi-Brauer variety. This is the smallest dimension where the structure of these Chow groups is unknown since the Chow group of cycles of dimension zero is torsion free [CM06, Kra10].

The main results of this text are the Corollaries 2.3 and 3.8. Together these corollaries prove that on any Severi-Brauer variety associated to a central simple algebra of odd index there is a collection of birationally equivalent curves so that the Chow group of cycles of dimension one is torsion free if and only if the rational equivalence class of an arbitrary

Date: July 16, 2021.
2010 Mathematics Subject Classification. 14C25.
Key words and phrases. Chow groups; Severi-Brauer variety.
curve is represented by a member of this collection.
Notation. We use the following notation throughout:

- F is a base field
- A is a simple F-algebra with center F and finite F-dimension
- D_{A} is the underlying division algebra of A
- the degree of A is the number $\operatorname{deg}(A)=\sqrt{\operatorname{dim}_{F}(A)}$
- the index of A is the number $\operatorname{ind}(A)=\sqrt{\operatorname{dim}_{F}\left(D_{A}\right)}$
- $X=\mathbf{S B}(A)$ is the Severi-Brauer variety of dimension $\operatorname{deg}(A)-1$.

Conventions. We use the following conventions throughout:

- a variety is an integral scheme that is separated and of finite type over a base field
- a curve is a scheme of dimension one that is separated and of finite type over a base field.

2. Chow groups

Let A be a simple F-algebra with center F and finite F-dimension. Associated to A is the Severi-Brauer variety $X=\mathbf{S B}(A)$. By definition X is the subvariety of the Grassmannian $\operatorname{Gr}(\operatorname{deg}(A), A)$ whose R-points $X(R) \subset \operatorname{Gr}(\operatorname{deg}(A), A)(R)$, for any finite type F-algebra R, correspond exactly to the projective summands of $A \otimes_{F} R$ that are also minimal right ideals of $A \otimes_{F} R$. In this section, we make some observations regarding the Chow groups $\mathrm{CH}_{i}(X)$ of dimension- i cycles on X.

Recall that there is a canonical vector bundle ζ_{X} on X coming from the pullback along the embedding $X \subset \mathbf{G r}(\operatorname{deg}(A), A)$ of the universal bundle of dimension- $\operatorname{deg}(A) F$-subspaces of A. The fiber of ζ_{X} over an R-point x of $X(R)$ is the right ideal corresponding to x. This allows one to define vector bundles

$$
\zeta_{X}(i):=\zeta_{X}^{\otimes i} \otimes_{A^{\otimes i}} M_{i}
$$

for every $i \geq 0$ and for some choice of simple left $A^{\otimes i}$-module M_{i}. Conventionally, we set $\zeta_{X}(i):=\zeta_{X}(-i)^{\vee}$ if $i<0$.

We write $\mathrm{CT}(1 ; X)$ for the subring of $\mathrm{CH}(X)$ generated by the Chern classes of $\zeta_{X}(1)$. The gradings on $\mathrm{CH}(X)$ induces gradings on $\mathrm{CT}(1 ; X)$. We write
$\mathrm{CT}^{i}(X)=\mathrm{CT}(1 ; X) \cap \mathrm{CH}^{i}(X) \quad$ and $\quad \mathrm{CT}_{i}(X)=\mathrm{CT}(1 ; X) \cap \mathrm{CH}_{i}(X)$
for the corresponding subgroups. By [KM19, Proposition A.8], there is an identification $\mathrm{CT}_{i}(X)=\mathbb{Z}$.

Lemma 2.1. For any integer $0 \leq i \leq \operatorname{dim}(X)$, there exists a closed subvariety $V \subset X$ with $\operatorname{dim}(V)=i$ so that the rational equivalence class $[V]$ in $\mathrm{CH}_{i}(X)$ is contained in $\mathrm{CT}_{i}(X)$.
Proof. If A is split, then $X=\mathbb{P}^{n}$ for some $n \geq 0$ and $\zeta_{X}(1)=\mathcal{O}_{\mathbb{P}^{n}}(-1)$. In this case the claim is immediate so that we can, from now on, assume that A is nontrivial. In particular, we can assume that the base field F is infinite.

The line bundle $\zeta_{X}(-\operatorname{ind}(A))=\operatorname{det}\left(\zeta_{X}(1)^{\vee}\right)$ is very ample so there is a closed immersion

$$
\rho: X \rightarrow \mathbb{P}(W)
$$

with $W=\mathrm{H}^{0}\left(X, \zeta_{X}(-\operatorname{ind}(A))\right)$. For each integer $0 \leq i \leq \operatorname{dim}(X)$, Bertini's theorem [Jou83, Théorème 6.10 et Corollaire 6.11] then gives a linear subspace $H_{i} \subset \mathbb{P}(W)$ so that:
(1) the intersection $V_{i}=H_{i} \cap \rho(X)$ is smooth for all $i \geq 0$,
(2) the intersection V_{i} is geometrically integral for all $i>0$,
(3) and there is an equality $\operatorname{codim}_{\mathbb{P}(W)}\left(H_{i}\right)=\operatorname{codim}_{X}\left(V_{i}\right)$.

The diagram below, depicting the situation, is Cartesian for all $i \geq 0$.

By [EKM08, Corollary 55.4] there is an equality of maps

$$
\left(\left.\varphi_{i}\right|_{V_{i}}\right)_{*} \circ\left(\left.\rho\right|_{V_{i}}\right)^{*}=\rho^{*} \circ \varphi_{i *}: \mathrm{CH}^{0}\left(H_{i}\right) \rightarrow \mathrm{CH}_{i}(X) .
$$

By [EKM08, Proposition 55.6], one has $\left(\left.\rho\right|_{V_{i}}\right)^{*}\left(\left[H_{i}\right]\right)=\left[V_{i}\right]$ so that

$$
\rho^{*}\left(\left[H_{i}\right]\right)=\rho^{*} \circ \varphi_{i *}\left(\left[H_{i}\right]\right)=\left(\left.\varphi_{i}\right|_{V_{i}}\right)_{*} \circ\left(\left.\rho\right|_{V_{i}}\right)^{*}\left(\left[H_{i}\right]\right)=\left(\left.\varphi_{i}\right|_{V_{i}}\right)_{*}\left(\left[V_{i}\right]\right)=\left[V_{i}\right] .
$$

Since the pullback respects Chern classes, there is an integer m_{i} so that

$$
\left[V_{i}\right]=\rho^{*}\left(\left[H_{i}\right]\right)=\rho^{*}\left(c_{1}\left(\mathcal{O}_{\mathbb{P}(W)}(1)\right)^{m_{i}}\right)=c_{1}\left(\zeta_{X}(-\operatorname{ind}(A))\right)^{m_{i}}
$$

is contained in $\mathrm{CT}_{i}(X)$ as desired.
We now turn to consider the quotients

$$
\mathrm{Q}^{i}(X)=\mathrm{CH}^{i}(X) / \mathrm{CT}^{i}(X) \quad \text { and } \quad \mathrm{Q}_{i}(X)=\mathrm{CH}_{i}(X) / \mathrm{CT}_{i}(X)
$$

From the short exact sequence

$$
0 \rightarrow \mathbb{Z}=\mathrm{CT}_{i}(X) \rightarrow \mathrm{CH}_{i}(X) \rightarrow \mathrm{Q}_{i}(X) \rightarrow 0
$$

it follows that the groups $\mathrm{Q}_{i}(X)$ are torsion and there is an inclusion

$$
0 \rightarrow \operatorname{Tor}_{1}\left(\mathrm{CH}_{i}(X), \mathbb{Q} / \mathbb{Z}\right) \rightarrow \operatorname{Tor}_{1}\left(\mathrm{Q}_{i}(X), \mathbb{Q} / \mathbb{Z}\right)
$$

The following proposition is the crux of this text.

Proposition 2.2. Let $V \subset X$ be any closed and irreducible subscheme with $\operatorname{dim}(V)=i$. If the pushforward along the first projection

$$
\mathrm{CH}_{i}(X \times W) \rightarrow \mathrm{CH}_{i}(X)
$$

has image contained in $\mathrm{CT}_{i}(X)$ for any closed subscheme $W \subsetneq V$, then there is an equality $[V]=\left[V^{\prime}\right]$ in $\mathrm{Q}_{i}(X)$ for any subscheme $V^{\prime} \subset X$ birationally equivalent to V.

Proof. As V and V^{\prime} are birationally equivalent, there are dense opens $U \subset V, U^{\prime} \subset V^{\prime}$, and an isomorphism $f: U^{\prime} \rightarrow U$. We write

$$
\Delta_{V} \subset V \times V \subset X \times V \quad \text { and } \quad \bar{\Gamma}_{f} \subset V^{\prime} \times V \subset X \times V
$$

for the diagonal and for the closure of the graph of f respectively.
Consider the following diagram.

The top row is the colimit of the exact localization sequences with respect to all open subschemes $X \times(V \backslash W) \subset X \times V$. The vertical arrow is pushforward along the projection $\pi: X \times V \rightarrow X$ and the diagonal arrow is the colimit of pushforwards along the projections $\left.\pi\right|_{X \times W}: X \times W \rightarrow X$ as W varies over all closed subschemes $W \subsetneq V$.

Since $X_{F(V)}$ has an $F(V)$-rational point, the group $\mathrm{CH}_{0}\left(X_{F(V)}\right)=\mathbb{Z}$ is infinite cyclic with generator the class of a rational point. Since both $\left[\Delta_{V}\right]$ and $\left[\bar{\Gamma}_{f}\right]$ restrict to the class of a rational point in $\mathrm{CH}_{0}\left(X_{F(V)}\right)$, it follows that there is a subscheme $W \subset V$ and an element ϕ of $\mathrm{CH}_{i}(X \times W)$ so that

$$
\left.\pi\right|_{X \times W *}(\phi)=\pi_{*}\left(\left[\Delta_{V}\right]-\left[\bar{\Gamma}_{f}\right]\right)=[V]-\left[V^{\prime}\right] .
$$

By assumption, the left side of this equation is contained in $\mathrm{CT}_{i}(X)$, so that $[V]=\left[V^{\prime}\right]$ in $\mathrm{Q}_{i}(X)$ as claimed.

Let $\mathrm{CH}_{1}^{ \pm}(X)=\mathrm{CH}_{1}(X) / \sim_{ \pm}$where $\sim_{ \pm}$is the equivalence relation on the set $\mathrm{CH}_{1}(X)$ identifying a class with its opposite, i.e. $\tau \sim_{ \pm}-\tau$.

Corollary 2.3. Suppose that there exists a collection of curves $\left\{\mathscr{C}_{\tau}\right\}_{\tau}$ on X, indexed over the elements $\tau \in \mathrm{CH}_{1}^{ \pm}(X) \backslash\{0\}$, satisfying:
(1) the class $\left[\mathscr{C}_{\tau}\right]=\tau$ in $\mathrm{CH}_{1}^{ \pm}(X)$
(2) for all classes $\sigma, \tau \in \mathrm{CH}_{1}^{ \pm}(X) \backslash\{0\}$, the curve \mathscr{C}_{τ} is birationally equivalent with \mathscr{C}_{σ}.
Then $\mathrm{CH}_{1}(X)=\mathbb{Z}$ is torsion free.

Proof. The assumptions of Proposition 2.2 hold for $V \subset X$ any curve by [Mac20b, Lemma 3.5]. Hence (2) implies that every curve \mathscr{C}_{τ} represents the same class in $\mathrm{Q}_{1}(X)$. It follows from (1) that every curve contained in X has the same class in $\mathrm{Q}_{1}(X)$. Since there is a curve $D \subset X$ whose rational equivalence class $[D]$ is contained in $\mathrm{CT}_{1}(X)$ by Lemma 2.1, we find that $\mathrm{Q}_{1}(X)=0$ and $\mathrm{CH}_{1}(X)=\mathbb{Z}$.

3. Constructing curves

Let $K \subset D_{A}$ be a separable maximal subfield of the division algebra underlying A. Let E be the Galois closure of K / F in some separable closure of F and write $G=\operatorname{Gal}(E / F)$ for the Galois group. The variety $X=\mathbf{S B}(A)$ is a form of \mathbb{P}^{n} twisted along a cocycle representing the class of A or X in $\mathrm{H}^{1}\left(G, \mathrm{PGL}_{n}\right)$ with $n=\operatorname{deg}(A)$. In this section, we use descent along this cocycle to construct a collection of curves in X.

In the split case $X=\mathbb{P}^{n}$ and $n \geq 2$, the Chow group $\mathrm{CH}_{1}(X)=\mathbb{Z}$ is infinite cyclic with generator the rational equivalence class of any one dimensional linear subspace $L \subset X$. The degree of a curve $C \subset X$ is the integer $\operatorname{deg}(C)$ so that $[C]=\operatorname{deg}(C)[L]$ in $\mathrm{CH}_{1}(X)$.

Lemma 3.1. Let $X=\mathbb{P}^{n}$ with $n \geq 2$. Then for each integer $d \geq 1$ one can choose a curve $\mathscr{C}_{d} \subset X$ so that $\mathscr{C}_{d}(F) \neq \emptyset$ and:
(1) the degree of the curve \mathscr{C}_{d} is $\operatorname{deg}\left(\mathscr{C}_{d}\right)=d$,
(2) and \mathscr{C}_{d} is birationally equivalent with \mathscr{C}_{e} for all $d, e \geq 1$.

Proof. If $d=1$, we take $\mathscr{C}_{d}=L$. If $d>1$, consider the composition

$$
\mathbb{P}^{1} \rightarrow \mathbb{P}^{d} \rightarrow-\mathbb{P}^{2} \hookrightarrow \mathbb{P}^{n}
$$

of the d th Veronese embedding, a projection inducing a birational equivalence of this Veronese curve with its image, and then a linear inclusion to \mathbb{P}^{n}. Taking \mathscr{C}_{d} to be the image of this composition we get a collection of curves with the desired properties.

In the general case $X=\mathbf{S B}(A)$, we call the degree of a curve $C \subset X$ the integer $\operatorname{deg}(C)$ so that $\left[C_{K}\right]=\operatorname{deg}(C)[L]$ in $\mathrm{CH}_{1}\left(X_{K}\right)$ for any one dimensional linear subspace $L \subset X_{K}$. This definition is independent of the field K. The following theorem is due to Karpenko.

Theorem 3.2 ([Mac20a, Corollary 3.8]). Let $X=\mathrm{SB}(A)$ be as above. Assume additionally $\operatorname{ind}(A)$ is odd. Let $K \supset F$ be a splitting field for X and write $\pi_{K}: X_{K} \rightarrow X$ for the projection map. Then the pullback gives an identification

$$
\pi_{K}^{*} \mathrm{CH}_{1}(X)=\operatorname{ind}(A) \mathbb{Z} \subset \mathbb{Z}=\mathrm{CH}_{1}\left(X_{K}\right)
$$

In particular, every curve $C \subset X$ has degree a multiple of $\operatorname{ind}(A)$.

Remark 3.3. If $\operatorname{ind}(A)$ is even, then it may not be true that $\operatorname{ind}(A)$ divides the degree $\operatorname{deg}(C)$ of any curve $C \subset X=\mathbf{S B}(A)$. Some explicit examples are given in [Kar96, Theorem 2.5] and [Kar17, Corollary 3.16].

The main theorem of this section is:
Theorem 3.4. Let $X=\mathbf{S B}(A)$ as above and suppose $\operatorname{dim}(X) \geq 2$. Then for each integer $d \geq 1$, one can find a curve $\mathscr{C}_{d} \subset X$ so that:
(1) the degree of the curve \mathscr{C}_{d} is $\operatorname{deg}\left(\mathscr{C}_{d}\right)=\operatorname{ind}(A) d$,
(2) and \mathscr{C}_{d} is birationally equivalent with \mathscr{C}_{e} for all $d, e \geq 1$.

The proof of Theorem 3.4 is broken into two lemmas. The idea is to construct, for each $d \geq 1$, a G-orbit of isomorphic degree d curves in X_{E} whose union is defined over K. These curves descend to a collection as desired because of the following:

Lemma 3.5. Let $H \subset G$ be a subgroup of G and $H \backslash G$ the set of right cosets of H. Suppose that both $\left\{C_{g}\right\}_{g \in H \backslash G}$ and $\left\{D_{g}\right\}_{g \in H \backslash G}$ are G-orbits of curves in X_{E} labeled so that $h\left(C_{g}\right)=C_{h g}$ and $h\left(D_{g}\right)=D_{h g}$ for all h in G. Then the unions

$$
\bigcup_{g \in H \backslash G} C_{g} \quad \text { and } \quad \bigcup_{g \in H \backslash G} D_{g}
$$

descend to curves \mathscr{C} and \mathscr{D} on X respectively. Moreover, if C_{g} is birationally equivalent with D_{g} for any g in $H \backslash G$, then \mathscr{C} is birationally equivalent with \mathscr{D}.
Proof. The curves \mathscr{C} and \mathscr{D} exist by descent so we're left to show the last statement. Let $f_{g}: U_{g} \rightarrow U_{g}^{\prime}$ be an isomorphism between an open subset $U_{g} \subset C_{g}$ and an open $U_{g}^{\prime} \subset D_{g}$. For any h in G, define $f_{h}: h g^{-1}\left(U_{g}\right) \rightarrow h g^{-1}\left(U_{g}^{\prime}\right)$ by the formula $f_{h}=\left(h g^{-1}\right) \circ f_{g} \circ\left(g h^{-1}\right)$. Then the map

$$
\tilde{\Phi}=\bigcup_{g \in G} f_{g}: \bigcup_{g \in H \backslash G} C_{g} \rightarrow \bigcup_{g \in H \backslash G} D_{g}
$$

is G-equivariant so it descends to a birational map $\Phi: \mathscr{C} \rightarrow \mathscr{D}$.
There are two different ways to construct these collections of curves, depending on the dimension of X, and both are necessary. We assume that F is infinite in the following Lemmas 3.6 and 3.7.
Lemma 3.6. Assume that $\operatorname{ind}(A)=[E: F]=\operatorname{deg}(A)$. Then there exists a point x in X with residue field $F(x)=E$ so that the E-points of x_{E} linearly span X_{E}. Labeling the E-points $\left\{x_{g}\right\}_{g \in G}$ of x_{E} so that $h\left(x_{g}\right)=x_{h g}$ for all $h \in G$, one can find curves $\mathscr{C}_{d} \subset X_{E}$ for each integer $d \geq 1$ so that:
(1) the degree of the curve \mathscr{C}_{d} is $\operatorname{deg}\left(\mathscr{C}_{d}\right)=d$,
(2) the curve \mathscr{C}_{d} passes through only x_{g}, i.e. $\mathscr{C}_{d} \cap x_{E}=x_{g}$,
(3) and \mathscr{C}_{d} is birationally equivalent with \mathscr{C}_{e} for all $d, e \geq 1$.

Proof. Note that if x is any point in X with $F(x)=E$, then the E points of x_{E} span a G-invariant linear subspace of X_{E} which must be all of X_{E} since A is a division algebra.

Now it's possible to find a collection of curves $\mathscr{C}_{d}^{\prime} \subset X$ satisfying both (1) and (3) above by Lemma 3.1. To see that we can find a collection of curves \mathscr{C}_{d} satisfying (1), (2), and (3) we show that, for any fixed $d \geq 1$, there is an automorphism α of X_{E} so that $\alpha\left(\mathscr{C}_{d}^{\prime}\right) \cap x_{E}=x_{g}$. Labeling $\mathscr{C}_{d}=\alpha\left(\mathscr{C}_{d}^{\prime}\right)$ we get the desired collection. For this, we pick an identification $X_{E} \cong \mathbb{P}_{E}^{n}$ and inductively choose E-rational points p_{0}, \ldots, p_{n} so that:
(1) p_{0} is in \mathscr{C}_{d}^{\prime}
(2) p_{1} is in $X_{E} \backslash \mathscr{C}_{d}^{\prime}$
(3) p_{2} is in $X_{E} \backslash\left(\mathscr{C}_{d}^{\prime} \cup L\left(p_{0}, p_{1}\right)\right)$ where $L\left(p_{0}, p_{1}\right)$ is the line in X_{E} containing both p_{0} and p_{1}, \ldots
(n) and with p_{n} an E-rational point in $X_{E} \backslash\left(\mathscr{C}_{d}^{\prime} \cup L\left(p_{0}, \ldots, p_{n-1}\right)\right)$ where $L\left(p_{0}, \ldots, p_{n-1}\right)$ is the linear space in X_{E} of dimension $n-1$ containing p_{0}, \ldots, p_{n-1}.
We can then choose a labeling $\left\{x_{i}\right\}_{i=0}^{n}$ of the E-points of x_{E} so that $x_{g}=x_{0}$ and, since x_{E} spans X_{E} linearly, there exists an automorphism β of $X_{E} \cong \mathbb{P}_{E}^{n}$ defined by

$$
\beta\left(x_{0}\right)=p_{0}, \ldots, \beta\left(x_{n}\right)=p_{n}
$$

Taking $\alpha=\beta^{-1}$ completes the proof.
Lemma 3.7. Suppose that $\operatorname{deg}(A) \geq 4$. Let x be any point in X with residue field $F(x)=K$. Let $H \subset G$ be the subgroup such that $K=E^{H}$. Label the E-points $\left\{x_{g}\right\}_{g \in H \backslash G}$ of x_{E} so that $h\left(x_{g}\right)=x_{h g}$ for all $h \in G$. Then there is a plane $P_{g}=\mathbb{P}_{E}^{2} \subset X_{E}$ so that $P_{g} \cap x_{E}=x_{g}$ and one can find curves $\mathscr{C}_{d} \subset X_{E}$ for each integer $d \geq 1$ so that:
(1) the degree of the curve \mathscr{C}_{d} is $\operatorname{deg}\left(\mathscr{C}_{d}\right)=d$,
(2) the curve \mathscr{C}_{d} passes through only x_{g}, i.e. $\mathscr{C}_{d} \cap x_{E}=x_{g}$,
(3) and \mathscr{C}_{d} is birationally equivalent with \mathscr{C}_{e} for all $d, e \geq 1$.

Proof. Suppose that we can find a plane P_{g} with the specified property. By Lemma 3.1 we can find, for each integer $d \geq 1$, a curve $\mathscr{C}_{d}^{\prime} \subset P_{g}$ satisfying both (1) and (3). Changing by an automorphism α of P_{g}, we can move any rational point on \mathscr{C}_{d}^{\prime} to x_{g} to get a curve $\mathscr{C}_{d}=\alpha\left(\mathscr{C}_{d}^{\prime}\right)$ that now also satisfies (2). So it suffices to prove that P_{g} exists.

Identify $X_{E} \cong \mathbb{P}(V)$ for an E-vector space V with $\operatorname{dim}(V) \geq 4$. The points $\left\{x_{g}\right\}_{g \in H \backslash G}$ correspond to lines $\left\{L_{g}\right\}_{g \in H \backslash G}$ in V. Consider the proper variety

$$
W \subset \mathbb{P}\left(V / L_{g}\right) \times \mathbf{G r}\left(2, V / L_{g}\right)
$$

consisting of pairs (L, P) where $L \subset P$. Let π_{1} and π_{2} be the first and second projections from this product respectively. The set of planes $P_{g} \subset X_{E}$ with $P_{g} \cap x_{E}=x_{g}$ corresponds to the set of E-rational points in the open complement

$$
\operatorname{Gr}\left(2, V / L_{g}\right) \backslash \pi_{2}\left(W \cap \bigcup_{h \in(H \backslash G) \backslash\{g\}} \pi_{1}^{-1}\left(\left\{L_{h}\right\}\right)\right)
$$

which is nonempty because of our assumption $\operatorname{dim}(V) \geq 4$.
Proof of Theorem 3.4. If $\operatorname{deg}(A)=3$ and A is nonsplit, then there is a Galois field extension $F \subset E$ of degree $[E: F]=3$ with $A \otimes_{F} E$ is split by Wedderburn's Theorem [KMRT98, Theorem 19.2]. By Lemma 3.6, for any fixed g in $G=\operatorname{Gal}(E / F)$ and for each integer $d \geq 1$, there are curves $C_{g}^{d} \subset X_{E}$ so that the following hold:
(1) the degree of the curve C_{g}^{d} is $\operatorname{deg}\left(C_{g}^{d}\right)=d$,
(2) the curve C_{g}^{d} passes through only x_{g}, i.e. $C_{g}^{d} \cap x_{E}=x_{g}$,
(3) and C_{g}^{d} is birationally equivalent with C_{g}^{e} for all $d, e \geq 1$.

Similarly, if $\operatorname{deg}(A) \geq 4$ then using Lemma 3.7 one can find curves $C_{g}^{d} \subset X_{E}$ with $g \in H / G$ satisfying the properties (1), (2), and (3).

In either case, for each $d \geq 1$, the Galois orbit of C_{g}^{d} gives a set of curves $\left\{C_{g}^{d}\right\}_{g}$ labeled so that $h\left(C_{g}^{d}\right)=C_{h g}^{d}$. The union of the curves in this orbit descends to a curve $\mathscr{C}_{d} \subset X$. The collection of these curves for varying integers $d \geq 1$ has both of the properties:
(1) the degree of \mathscr{C}_{d} is $\operatorname{deg}\left(\mathscr{C}_{d}\right)=\operatorname{ind}(A) d$,
(2) and \mathscr{C}_{d} is birationally equivalent with \mathscr{C}_{e} for all $d, e \geq 1$.

The first property (1) follows from the construction of \mathscr{C}_{d}. The second property (2) follows from Lemma 3.5.

With Theorem 3.4 proved, we get a converse to Corollary 2.3.
Corollary 3.8. If $\operatorname{ind}(A)$ is odd, then $\mathrm{CH}_{1}(X)$ is torsion free only if there exists a collection of curves $\left\{\mathscr{C}_{\tau}\right\}_{\tau}$ on X indexed by elements $\tau \in \mathrm{CH}_{1}^{ \pm}(X) \backslash\{0\}$ and satisfying the properties:
(1) the class $\left[\mathscr{C}_{\tau}\right]=\tau$ in $\mathrm{CH}_{1}^{ \pm}(X)$
(2) for all classes $\sigma, \tau \in \mathrm{CH}_{1}^{ \pm}(X) \backslash\{0\}$, the curve \mathscr{C}_{τ} is birationally equivalent with \mathscr{C}_{σ}.

Proof. If $\mathrm{CH}_{1}(X)$ is torsion free, then by Theorem 3.2 we can identify $\mathrm{CH}_{1}(X)=\mathbb{Z}$ with a generator being any curve having degree $\operatorname{ind}(A)$. A collection of such curves is then given by Theorem 3.4.

Remark 3.9. The group $\mathrm{CH}_{1}(X)$ is known to be torsion free only in a few cases: if A has almost square-free index [Mer95, Proposition 1.15]; if $(\operatorname{ind}(A), 8) \leq 4$ and X is generic [Mac20a, Theorem 4.1].

References

[Bae15] S. Baek, On the torsion of Chow groups of Severi-Brauer varieties, Israel J. Math. 207 (2015), no. 2, 899-923. MR 3359722
[CM06] V. Chernousov and A. Merkurjev, Connectedness of classes of fields and zero-cycles on projective homogeneous varieties, Compos. Math. 142 (2006), no. 6, 1522-1548. MR 2278759
[EKM08] R. Elman, N. Karpenko, and A. Merkurjev, The algebraic and geometric theory of quadratic forms, American Mathematical Society Colloquium Publications, vol. 56, American Mathematical Society, Providence, RI, 2008. MR 2427530
[Jou83] J.-P. Jouanolou, Théorèmes de Bertini et applications, Progress in Mathematics, vol. 42, Birkhäuser Boston, Inc., Boston, MA, 1983. MR 725671
[Kar95] N. Karpenko, Torsion in CH^{2} of Severi-Brauer varieties and indecomposability of generic algebras, Manuscripta Math. 88 (1995), no. 1, 109117. MR 1348794
[Kar96] , On topological filtration for triquaternion algebra, Nova J. Math. Game Theory Algebra 4 (1996), no. 2, 161-167. MR 1394813
[Kar98] , Codimension 2 cycles on Severi-Brauer varieties, K-Theory 13 (1998), no. 4, 305-330. MR 1615533
[Kar17] , Chow ring of generically twisted varieties of complete flags, Adv. Math. 306 (2017), 789-806. MR 3581317
[KM19] N. Karpenko and E. Mackall, On the K-theory coniveau epimorphism for products of Severi-Brauer varieties, Ann. K-Theory 4 (2019), no. 2, 317-344, With appendices by Mackall. MR 3990787
[KMRT98] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998, With a preface in French by J. Tits. MR 1632779
[Kra10] D. Krashen, Zero cycles on homogeneous varieties, Adv. Math. 223 (2010), no. 6, 2022-2048. MR 2601007
[Mac20a] E. Mackall, Algebraic connective K-theory of a Severi-Brauer variety with prescribed reduced behavior, Preprint (2020), 1-19, Available on author's webpage: https://www.eoinmackall.com/s/revconnectivek. pdf.
[Mac20b] , Codimension 2 cycles on Severi-Brauer varieties and decomposability, 1-14, Preprint available on author's webpage: https://www. eoinmackall.com/s/codimension-2.pdf.
[Mac20c] , A universal coefficient theorem with applications to torsion in Chow groups of Severi-Brauer varieties, New York J. Math. 26 (2020), 1155-1183. MR 4164177
[Mer95] A. Merkurjev, Certain K-cohomology groups of Severi-Brauer varieties, K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), Proc. Sympos. Pure Math., vol. 58, Amer. Math. Soc., Providence, RI, 1995, pp. 319-331. MR 1327307
[MS82] A. Merkurjev and A. Suslin, K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 1011-1046, 1135-1136. MR 675529
[Sus84] A. Suslin, Algebraic K-theory and the norm residue homomorphism, Current problems in mathematics, Vol. 25, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 115-207. MR 770942
Email address: eoinmackall at gmail.com
URL: www.eoinmackall.com

